919 resultados para Gas-solid reactions


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The research and development of nanostructured materials have been growing significantly in the last years. These materials have properties that were significantly modified as compared to conventional materials due to the extremely small dimensions of the crystallites. The tantalum carbide (TaC) is an extremely hard material that has high hardness, high melting point, high chemical stability, good resistance to chemical attack and thermal shock and excellent resistance to oxidation and corrosion. The Compounds of Tantalum impregnated with copper also have excellent dielectric and magnetic properties. Therefore, this study aimed to obtain TaC and mixed tantalum oxide and nanostructured copper from the precursor of tris (oxalate) hydrate ammonium oxitantalato, through gas-solid reaction and solid-solid respectively at low temperature (1000 ° C) and short reaction time. The materials obtained were characterized by X-ray diffraction (XRD), Rietveld refinement, Scanning Electron Microscopy (SEM), Spectroscopy X-Ray Fluorescence (XRF), infrared spectroscopy (IR), thermogravimetric (TG), thermal analysis (DTA) and BET. Through the XRD analyses and the Reitiveld refinement of the TaC with S = 1.1584, we observed the formation of pure tantalum carbide and cubic structure with average crystallite size on the order of 12.5 nanometers. From the synthesis made of mixed oxide of tantalum and copper were formed two distinct phases: CuTa10O26 and Ta2O5, although the latter has been formed in lesser amounts

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The refractory metal carbides have proven important in the development of engineering materials due to their properties such as high hardness, high melting point, high thermal conductivity and high chemical stability. The niobium carbide presents these characteristics. The compounds of niobium impregnated with copper also have excellent dielectric and magnetic properties, and furthermore, the Cu doping increases the catalytic activity in the oxidation processes of hydrogen. This study aimed to the synthesis of nanostructured materials CuNbC and niobium and copper oxide from precursor tris(oxalate) oxiniobate ammonium hydrate through gas-solid and solid-solid reaction, respectively. Both reactions were carried out at low temperature (1000°C) and short reaction time (2 hours). The niobium carbide was produced with 5 % and 11% of copper, and the niobium oxide with 5% of copper. The materials were characterized by X-Ray Diffraction (XRD), Rietveld refinement, Scanning Electron Microscopy (SEM), X-Ray Fluorescence Spectroscopy (XRF), infrared spectroscopy (IR), thermogravimetric (TG) and differential thermal analysis (DTA , BET and particle size Laser. From the XRD analysis and Rietveld refinement of CuNbC with S = 1.23, we observed the formation of niobium carbide and metallic copper with cubic structure. For the synthesis of mixed oxide made of niobium and copper, the formation of two distinct phases was observed: CuNb2O6 and Nb2O5, although the latter was present in small amounts

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Ozone-induced dissociation (OzID) is an alternative ion activation method that relies on the gas phase ion-molecule reaction between a mass-selected target ion and ozone in an ion trap mass spectrometer. Herein, we evaluated the performance of OzID for both the structural elucidation and selective detection of conjugated carbon-carbon double bond motifs within lipids. The relative reactivity trends for \[M + X](+) ions (where X = Li, Na, K) formed via electrospray ionization (ESI) of conjugated versus nonconjugated fatty acid methyl esters (FAMEs) were examined using two different OzID-enabled linear ion-trap mass spectrometers. Compared with nonconjugated analogues, FAMEs derived from conjugated linoleic acids were found to react up to 200 times faster and to yield characteristic radical cations. The significantly enhanced reactivity of conjugated isomers means that OzID product ions can be observed without invoking a reaction delay in the experimental sequence (i.e., trapping of ions in the presence of ozone is not required). This possibility has been exploited to undertake neutral-loss scans on a triple quadrupole mass spectrometer targeting characteristic OzID transitions. Such analyses reveal the presence of conjugated double bonds in lipids extracted from selected foodstuffs. Finally, by benchmarking of the absolute ozone concentration inside the ion trap, second order rate constants for the gas phase reactions between unsaturated organic ions and ozone were obtained. These results demonstrate a significant influence of the adducting metal on reaction rate constants in the fashion Li > Na > K.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

High valent metal(IV)-oxo species, \[M(=O)(Melm)(n)(OAc)](+) (M = Mn-Ni, MeIm = 1-methylimidazole, n = 1-2), which are relevant to biology and oxidative catalysis, were produced and isolated in gas-phase reactions of the metal(II) precursor ions \[M(MeIm)(n)(OAc)](+) (M = Mn-Zn, n = 1-3) with ozone. The precursor ions \[M(MeIm)(OAc)](+) and \[M(MeIm)(2)(OAc)](+) were generated via collision-induced dissociation of the corresponding \[M(MeIm)(3)(OAc)](+) ion. The dependence of ozone reactivity on metal and coordination number is discussed. Copyright (C) 2010 John Wiley & Sons, Ltd.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Control and diagnostics of low-frequency (∼ 500 kHz) inductively coupled plasmas for chemical vapor deposition (CVD) of nano-composite carbon nitride-based films is reported. Relation between the discharge control parameters, plasma electron energy distribution/probability functions (EEDF/EEPF), and elemental composition in the deposited C-N based thin films is investigated. Langmuir probe technique is employed to monitor the plasma density and potential, effective electron temperature, and EEDFs/EEPFs in Ar + N2 + CH4 discharges. It is revealed that varying RF power and gas composition/pressure one can engineer the EEDFs/EEPFs to enhance the desired plasma-chemical gas-phase reactions thus controlling the film chemical structure. Auxiliary diagnostic tools for study of the RF power deposition, plasma composition, stability, and optical emission are discussed as well.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Studies of valence bands and core levels of solids by photoelectron spectroscopy are described at length. Satellite phenomena in the core level spectra have been discussed in some detail and it has been pointed out that the intensity of satellites appearing next to metal and ligand core levels critically depends on the metal-ligand overlap. Use of photoelectron spectroscopy in investigating metal-insulator transitions and spin-state transitions in solids is examined. It is shown that relative intensities of metal Auger lines in transition metal oxides and other systems provide valuable information on the valence bands. Occurrence of interatomic Auger transitions in competition with intraatomic transitions is discussed. Applications of electron energy loss spectroscopy and other techniques of electron spectroscopy in the study of gas-solid interactions are briefly presented.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The relationship between the structure and flammability of a number of polyphosphate esters has been examined. The conventional correlation of char residue with limiting oxygen index was found to be unproductive in these polymers, giving insight into the importance of gas-phase reactions in addition to condensed-phase reactions in determining their flammability. A novel approach was sought in understanding the structure-flammability relationships of these polymers relating thermal stability, phosphorus content and limiting oxygen index. An empirical relationship has been derived amongst these three parameters.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The effect of tri- and tetramethylammonium perchlorates (MAP-3 and MAP-4) on the burning rate of ammonium perchlorate (AP) based propellants has been determined at various pressures. Both additives increase the burning rate; however, MAP-3 has a moderate effect, whereas MAP-4 has a rather large effect. To explain the results, the thermal decomposition and calorimetric values of the propellants having these additives have been examined. Compound MAP-3 affects the thermal decomposition rate considerably, whereas MAP-4 has virtually no effect on the decomposition rate. The contrasting effects of MAP-4 on decomposition and burning rate suggest that the enhancement of burning rate may be due to the catalysis of gas-phase reactions. Further, detailed differences between behaviour of MAP-3, and MAP-4 appear to be attributable to the melting and low-temperature exotherm of MAP-3 and nonmelting and high-temperature exotherm of MAP-4.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Transition metal oxides like Fe2O3, Ni2O3, Co2O3 and MnO2 suppress the combustion of polystyrene. The effect has been explained on the basis of condensed-phase and gas-phase reactions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A first comprehensive investigation on the deflagration of ammonium perchlorate (AP) in the subcritical regime, below the low pressure deflagration limit (LPL, 2.03 MPa) christened as regime I$^{\prime}$, is discussed by using an elegant thermodynamic approach. In this regime, deflagration was effected by augmenting the initial temperature (T$_{0}$) of the AP strand and by adding fuels like aliphatic dicarboxylic acids or polymers like carboxy terminated polybutadiene (CTPB). From this thermodynamic model, considering the dependence of burning rate ($\dot{r}$) on pressure (P) and T$_{0}$, the true condensed (E$_{\text{s,c}}$) and gas phase (E$_{\text{s,g}}$) activation energies, just below and above the surface respectively, have been obtained and the data clearly distinguishes the deflagration mechanisms in regime I$^{\prime}$ and I (2.03-6.08 MPa). Substantial reduction in the E$_{\text{s,c}}$ of regime I$^{\prime}$, compared to that of regime I, is attributed to HClO$_{4}$ catalysed decomposition of AP. HClO$_{4}$ formation, which occurs only in regime I$^{\prime}$, promotes dent formation on the surface as revealed by the reflectance photomicrographs, in contrast to the smooth surface in regime I. The HClO$_{4}$ vapours, in regime I$^{\prime}$, also catalyse the gas phase reactions and thus bring down the E$_{\text{s,g}}$ too. The excess heat transferred on to the surface from the gas phase is used to melt AP and hence E$_{\text{s,c}}$, in regime I, corresponds to the melt AP decomposition. It is consistent with the similar variation observed for both the melt layer thickness and $\dot{r}$ as a function of P. Thermochemical calculations of the surface heat release support the thermodynamic model and reveal that the AP sublimation reduces the required critical exothermicity of 1108.8 kJ kg$^{-1}$ at the surface. It accounts for the AP not sustaining combustion in the subcritical regime I$^{\prime}$. Further support for the model comes from the temperature-time profiles of the combustion train of AP. The gas and condensed phase enthalpies, derived from the profile, give excellent agreement with those computed thermochemically. The $\sigma _{\text{p}}$ expressions derived from this model establish the mechanistic distinction of regime I$^{\prime}$ and I and thus lend support to the thermodynamic model. On comparing the deflagration of strand against powder AP, the proposed thermodynamic model correctly predicts that the total enthalpy of the condensed and gas phases remains unaltered. However, 16% of AP particles undergo buoyant lifting into the gas phase in the `free board region' (FBR) and this renders the demarcation of the true surface difficult. It is found that T$_{\text{s}}$ lies in the FBR and due to this, in regime I$^{\prime}$, the E$_{\text{s,c}}$ of powder AP matches with the E$_{\text{s,g}}$ of the pellet. The model was extended to AP/dicarboxylic acids and AP/CTPB mixture. The condensed ($\Delta $H$_{1}$) and gas phase ($\Delta $H$_{2}$) enthalpies were obtained from the temperature profile analyses which fit well with those computed thermochemically. The $\Delta $H$_{1}$ of the AP/succinic acid mixture was found just at the threshold of sustaining combustion. Indeed the lower homologue malonic acid, as predicted, does not sustain combustion. In vaporizable fuels like sebacic acid the E$_{\text{s,c}}$ in regime I$^{\prime}$, understandably, conforms to the AP decomposition. However, the E$_{\text{s,c}}$ in AP/CTPB system corresponds to the softening of the polymer which covers AP particles to promote extensive condensed phase reactions. The proposed thermodynamic model also satisfactorily explains certain unique features like intermittent, plateau and flameless combustion in AP/ polymeric fuel systems.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Tutkimuksen tarkoituksena oli selvittää desorptio/fotoionisaatio ilmanpaineessa tekniikan (engl. desorption atmospheric pressure photoionization, DAPPI) soveltuvuutta rikosteknisen laboratorion näytteiden analysointiin. DAPPI on nopea massaspektrometrinen ionisaatiotekniikka, jolla voidaan tutkia yhdisteitä suoraan erilaisilta pinnoilta. DAPPI:ssa käytetään lämmitettyä mikrosirua, joka suihkuttaa höyrystynyttä liuotin- ja kaasuvirtausta kohti näytettä. Näytteen pinnan komponentit desorboituvat lämmön vaikutuksesta, jonka jälkeen ionisoituminen tapahtuu VUV-lampun emittoimien fotonien avulla.DAPPI:lla tutkittiin takavarikoituja huumausaineita, anabolisia steroideja ja räjähdysaineita sekä niiden jäämiä erilaisilta pinnoilta. Lisäksi kartoitettiin DAPPI:n mahdollisuuksia ja rajoituksia erilaisille näytematriiseille ilman näytteiden esikäsittelyä. Takavarikoitujen huumausaineiden tutkimuksessa analysoitiin erilaisia tabletteja, jauheita, kasvirouheita, huumekasveja (khat, oopium, kannabis) ja sieniä. Anabolisia steroideja tunnistettiin tableteista sekä ampulleista, jotka sisälsivät öljymäistä nestettä. Jauheet ripoteltiin kaksipuoliselle teipille ja analysoitiin siltä. Muut näytteet analysoitiin sellaisenaan ilman minkäänlaista esikäsittelyä, paitsi nestemäisten näytteiden kohdalla näyte pipetoitiin talouspaperille, joka analysoitiin DAPPI:lla. DAPPI osoittautui nopeaksi ja yksinkertaiseksi menetelmäksi takavarikoitujen huumausaineiden ja steroidien analysoimisessa. Se soveltui hyvin rikoslaboratorion erityyppisten näytteiden rutiiniseulontaan ja helpotti erityisesti huumekasvien ja öljymäisten steroidiliuosten tutkimusta. Massaspektrometrin likaantuminen pystyttiin ehkäisemään säätämällä näytteen etäisyyttä sen suuaukosta. Likaantumista ei havaittu huolimatta näytteiden korkeista konsentraatioista ja useita kuukausia jatkuneista mittauksista. Räjähdysaineiden tutkimuksessa keskityttiin seitsemän eri räjähdysaineen DAPPI-MS-menetelmän kehitykseen; trinitrotolueeni (TNT), nitroglykoli (NK), nitroglyseriini (NG), pentriitti (PETN), heksogeeni (RDX), oktogeeni (HMX) ja pikriinihappoä Nämä orgaaniset räjähteet ovat nitraattiyhdisteitä, jotka voidaan jakaa rakenteen puolesta nitroamiineihin (RDX ja HMX), nitroaromaatteihin (TNT ja pikriinihappo) sekä nitraattiestereihin (PETN, NG ja NK). Menetelmäkehityksessä räjähdysainelaimennokset pipetoitiin polymetyylimetakrylaatin (PMMA) päälle ja analysoitiin siitä. DAPPI:lla tutkittiin myäs autenttisia räjähdysainejäämiä erilaisista matriiseista. DAPPI:lla optimoitiin jokaiselle räjähdysaineelle sopiva menetelmä ja yhdisteet saatiin näkymään puhdasaineina. Räjähdysainejäämien analysoiminen erilaisista rikospaikkamateriaaleista osoittautui haastavammaksi tehtäväksi, koska matriisit aiheuttivat itsessään korkean taustan spektriin, josta räjähdysaineiden piikit eivät useimmiten erottuneet tarpeeksi. Muut desorptioionisaatiotekniikat saattavat soveltua paremmin haastavien räjähdysainejäämien havaitsemiseksi.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper reports reacting fluid dynamics calculations for an ammonium percholrate binder sandwich and extracts experimentally observed features including surface profiles and maximum regression rates as a function of pressure and binder thickness. These studies have been carried out by solving the two-dimensional unsteady Navier-Stokes equations with energy and species conservation equations and a kinetic model of three reaction steps (ammonium perchlorate decomposition flame, primary diffusion flame, and final diffusion flame) in the gas phase. The unsteady two-dimensional conduction equation is solved in the condensed phase. The regressing surface is unsteady and two dimensional. Computations have been carried out for a binder thickness range of 25-125 mum and a pressure range of 1.4 to 6.9 MPa. Good comparisons at several levels of detail are used to demonstrate the need for condensed-phase two-dimensional unsteady conduction and three-step gas-phase reactions. The choice of kinetic and thermodynamic parameters is crucial to good comparison with experiments. The choice of activation energy parameters for ammonium percholrate combustion has been made with stability of combustion in addition to experimentally determined values reported in literature. The choice of gas-phase parameters for the diffusion flames are made considering that (a) primary diffusion flame affects the low-pressure behavior and (b) final diffusion flame affects high-pressure behavior. The predictions include the low-pressure deflagration limit of the sandwich apart from others noted above. Finally, this study demonstrates the possibility of making meaningful comparisons with experimental observations on sandwich propellant combustion.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This study focuses on addressing the propagation front movement in a co-current downdraft gasification system. A detailed single particle modeling analysis extended to the packed bed reactor is used to compare with the experimental measurement as well those available in the literature. This model for biomass gasification systems considered pyrolysis process, gas phase volatile combustion, and heterogeneous char reactions along with gas phase reactions in the packed bed. The pyrolysis kinetics has a critical influence on the gasification process. The propagation front has been shown to increase with air mass flux, attains a peak and then decreases with further increase in air mass flux and finally approaches negative propagation rate. This indicates that front is receding, or no upward movement() bra her it is moving downward towards the char bed. The propagation rate correlates with mass flux as (m) over dot `'(0.883) during the increasing regimes of the front movement The study clearly identifies that bed movement is an important parameter for consideration in a co-current configuration towards establishing the effective bed movement. The study also highlights the importance of surface area to volume ratio of the particles in the packed bed and its influence on the volatile generation. Finally, the gas composition for air gasification under various air mass fluxes is compared with the experimental results. (C) 2016 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

在激波管里进行了可压缩性气固两相流的实验研究。测量了激波通过颗粒群时的压力的衰减过程。用纹影仪拍摄了激波与颗粒群相互干涉的照片。试验了颗粒群的不同构造对压力衰减的影响。指出了激波反射、聚焦等非线性气动因素是可压缩性气固两相流的关键问题。

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Our understanding of the processes and mechanisms by which secondary organic aerosol (SOA) is formed is derived from laboratory chamber studies. In the atmosphere, SOA formation is primarily driven by progressive photooxidation of SOA precursors, coupled with their gas-particle partitioning. In the chamber environment, SOA-forming vapors undergo multiple chemical and physical processes that involve production and removal via gas-phase reactions; partitioning onto suspended particles vs. particles deposited on the chamber wall; and direct deposition on the chamber wall. The main focus of this dissertation is to characterize the interactions of organic vapors with suspended particles and the chamber wall and explore how these intertwined processes in laboratory chambers govern SOA formation and evolution.

A Functional Group Oxidation Model (FGOM) that represents SOA formation and evolution in terms of the competition between functionalization and fragmentation, the extent of oxygen atom addition, and the change of volatility, is developed. The FGOM contains a set of parameters that are to be determined by fitting of the model to laboratory chamber data. The sensitivity of the model prediction to variation of the adjustable parameters allows one to assess the relative importance of various pathways involved in SOA formation.

A critical aspect of the environmental chamber is the presence of the wall, which can induce deposition of SOA-forming vapors and promote heterogeneous reactions. An experimental protocol and model framework are first developed to constrain the vapor-wall interactions. By optimal fitting the model predictions to the observed wall-induced decay profiles of 25 oxidized organic compounds, the dominant parameter governing the extent of wall deposition of a compound is identified, i.e., wall accommodation coefficient. By correlating this parameter with the molecular properties of a compound via its volatility, the wall-induced deposition rate of an organic compound can be predicted based on its carbon and oxygen numbers in the molecule.

Heterogeneous transformation of δ-hydroxycarbonyl, a major first-generation product from long-chain alkane photochemistry, is observed on the surface of particles and walls. The uniqueness of this reaction scheme is the production of substituted dihydrofuran, which is highly reactive towards ozone, OH, and NO3, thereby opening a reaction pathway that is not usually accessible to alkanes. A spectrum of highly-oxygenated products with carboxylic acid, ester, and ether functional groups is produced from the substituted dihydrofuran chemistry, thereby affecting the average oxidation state of the alkane-derived SOA.

The vapor wall loss correction is applied to several chamber-derived SOA systems generated from both anthropogenic and biogenic sources. Experimental and modeling approaches are employed to constrain the partitioning behavior of SOA-forming vapors onto suspended particles vs. chamber walls. It is demonstrated that deposition of SOA-forming vapors to the chamber wall during photooxidation experiments can lead to substantial and systematic underestimation of SOA. Therefore, it is likely that a lack of proper accounting for vapor wall losses that suppress chamber-derived SOA yields contribute substantially to the underprediction of ambient SOA concentrations in atmospheric models.