971 resultados para Gas exchange


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Man-induced climate change has raised the need to predict the future climate and its feedback to vegetation. These are studied with global climate models; to ensure the reliability of these predictions, it is important to have a biosphere description that is based upon the latest scientific knowledge. This work concentrates on the modelling of the CO2 exchange of the boreal coniferous forest, studying also the factors controlling its growing season and how these can be used in modelling. In addition, the modelling of CO2 gas exchange at several scales was studied. A canopy-level CO2 gas exchange model was developed based on the biochemical photosynthesis model. This model was first parameterized using CO2 exchange data obtained by eddy covariance (EC) measurements from a Scots pine forest at Sodankylä. The results were compared with a semi-empirical model that was also parameterized using EC measurements. Both of the models gave satisfactory results. The biochemical canopy-level model was further parameterized at three other coniferous forest sites located in Finland and Sweden. At all the sites, the two most important biochemical model parameters showed seasonal behaviour, i.e., their temperature responses changed according to the season. Modelling results were improved when these changeover dates were related to temperature indices. During summer-time the values of the biochemical model parameters were similar at all the four sites. Different control factors for CO2 gas exchange were studied at the four coniferous forests, including how well these factors can be used to predict the initiation and cessation of the CO2 uptake. Temperature indices, atmospheric CO2 concentration, surface albedo and chlorophyll fluorescence (CF) were all found to be useful and have predictive power. In addition, a detailed simulation study of leaf stomata in order to separate physical and biochemical processes was performed. The simulation study brought to light the relative contribution and importance of the physical transport processes. The results of this work can be used in improving CO2 gas exchange models in boreal coniferous forests. The meteorological and biological variables that represent the seasonal cycle were studied, and a method for incorporating this cycle into a biochemical canopy-level model was introduced.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Lakes serve as sites for terrestrially fixed carbon to be remineralized and transferred back to the atmosphere. Their role in regional carbon cycling is especially important in the Boreal Zone, where lakes can cover up to 20% of the land area. Boreal lakes are often characterized by the presence of a brown water colour, which implies high levels of dissolved organic carbon from the surrounding terrestrial ecosystem, but the load of inorganic carbon from the catchment is largely unknown. Organic carbon is transformed to methane (CH4) and carbon dioxide (CO2) in biological processes that result in lake water gas concentrations that increase above atmospheric equilibrium, thus making boreal lakes as sources of these important greenhouse gases. However, flux estimates are often based on sporadic sampling and modelling and actual flux measurements are scarce. Thus, the detailed temporal flux dynamics of greenhouse gases are still largely unknown. ----- One aim here was to reveal the natural dynamics of CH4 and CO2 concentrations and fluxes in a small boreal lake. The other aim was to test the applicability of a measuring technique for CO2 flux, i.e. the eddy covariance (EC) technique, and a computational method for estimation of primary production and community respiration, both commonly used in terrestrial research, in this lake. Continuous surface water CO2 concentration measurements, also needed in free-water applications to estimate primary production and community respiration, were used over two open water periods in a study of CO2 concentration dynamics. Traditional methods were also used to measure gas concentration and fluxes. The study lake, Valkea-Kotinen, is a small, humic, headwater lake within an old-growth forest catchment with no local anthropogenic disturbance and thus possible changes in gas dynamics reflect the natural variability in lake ecosystems. CH4 accumulated under the ice and in the hypolimnion during summer stratification. The surface water CH4 concentration was always above atmospheric equilibrium and thus the lake was a continuous source of CH4 to the atmosphere. However, the annual CH4 fluxes were small, i.e. 0.11 mol m-2 yr-1, and the timing of fluxes differed from that of other published estimates. The highest fluxes are usually measured in spring after ice melt but in Lake Valkea-Kotinen CH4 was effectively oxidised in spring and highest effluxes occurred in autumn after summer stratification period. CO2 also accumulated under the ice and the hypolimnetic CO2 concentration increased steadily during stratification period. The surface water CO2 concentration was highest in spring and in autumn, whereas during the stable stratification it was sometimes under atmospheric equilibrium. It showed diel, daily and seasonal variation; the diel cycle was clearly driven by light and thus reflected the metabolism of the lacustrine ecosystem. However, the diel cycle was sometimes blurred by injection of hypolimnetic water rich in CO2 and the surface water CO2 concentration was thus controlled by stratification dynamics. The highest CO2 fluxes were measured in spring, autumn and during those hypolimnetic injections causing bursts of CO2 comparable with the spring and autumn fluxes. The annual fluxes averaged 77 (±11 SD) g C m-2 yr-1. In estimating the importance of the lake in recycling terrestrial carbon, the flux was normalized to the catchment area and this normalized flux was compared with net ecosystem production estimates of -50 to 200 g C m-2 yr-1 from unmanaged forests in corresponding temperature and precipitation regimes in the literature. Within this range the flux of Lake Valkea-Kotinen yielded from the increase in source of the surrounding forest by 20% to decrease in sink by 5%. The free water approach gave primary production and community respiration estimates of 5- and 16-fold, respectively, compared with traditional bottle incubations during a 5-day testing period in autumn. The results are in parallel with findings in the literature. Both methods adopted from the terrestrial community also proved useful in lake studies. A large percentage of the EC data was rejected, due to the unfulfilled prerequisites of the method. However, the amount of data accepted remained large compared with what would be feasible with traditional methods. Use of the EC method revealed underestimation of the widely used gas exchange model and suggests simultaneous measurements of actual turbulence at the water surface with comparison of the different gas flux methods to revise the parameterization of the gas transfer velocity used in the models.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

BACKGROUND: One of the central physiological functions of the lungs is to transfer inhaled gases from the alveoli to pulmonary capillary blood. However, current measures of alveolar gas uptake provide only global information and thus lack the sensitivity and specificity needed to account for regional variations in gas exchange. METHODS AND PRINCIPAL FINDINGS: Here we exploit the solubility, high magnetic resonance (MR) signal intensity, and large chemical shift of hyperpolarized (HP) (129)Xe to probe the regional uptake of alveolar gases by directly imaging HP (129)Xe dissolved in the gas exchange tissues and pulmonary capillary blood of human subjects. The resulting single breath-hold, three-dimensional MR images are optimized using millisecond repetition times and high flip angle radio-frequency pulses, because the dissolved HP (129)Xe magnetization is rapidly replenished by diffusive exchange with alveolar (129)Xe. The dissolved HP (129)Xe MR images display significant, directional heterogeneity, with increased signal intensity observed from the gravity-dependent portions of the lungs. CONCLUSIONS: The features observed in dissolved-phase (129)Xe MR images are consistent with gravity-dependent lung deformation, which produces increased ventilation, reduced alveolar size (i.e., higher surface-to-volume ratios), higher tissue densities, and increased perfusion in the dependent portions of the lungs. Thus, these results suggest that dissolved HP (129)Xe imaging reports on pulmonary function at a fundamental level.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Many of the reactive trace gases detected in the atmosphere are both emitted from and deposited to the global oceans via exchange across the airâsea interface. The resistance to transfer through both air and water phases is highly sensitive to physical drivers (waves, bubbles, films, etc.), which can either enhance or suppress the rate of diffusion. In addition to outlining the fundamental processes controlling the airâsea gas exchange, the authors discuss these drivers, describe the existing parameterizations used to predict transfer velocities, and summarize the novel techniques for measuring in situ exchange rates. They review trace gases that influence climate via radiative forcing (greenhouse gases), those that can alter the oxidative capacity of the atmosphere (nitrogen- and sulfur-containing gases), and those that impact ozone levels (organohalogens), both in the troposphere and stratosphere. They review the known biological and chemical routes of production and destruction within the water column for these gases, whether the ocean acts as a source or sink, and whether temporal and spatial variations in saturation anomalies are observed. A current estimate of the marine contribution to the total atmospheric flux of these gases, which often highlights the significance of the oceans in biogeochemical cycling of trace gases, is provided, and how airâsea gas fluxes may change in the future is briefly assessed.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The air-sea exchange of two legacy persistent organic pollutants (POPs), γ-HCH and PCB 153, in the North Sea, is presented and discussed using results of regional fate and transport and shelf-sea hydrodynamic ocean models for the period 1996â2005. Air-sea exchange occurs through gas exchange (deposition and volatilization), wet deposition and dry deposition. Atmospheric concentrations are interpolated into the model domain from results of the EMEP MSC-East multi-compartmental model (Gusev et al, 2009). The North Sea is net depositional for γ-HCH, and is dominated by gas deposition with notable seasonal variability and a downward trend over the 10 year period. Volatilization rates of γ-HCH are generally a factor of 2â3 less than gas deposition in winter, spring and summer but greater in autumn when the North Sea is net volatilizational. A downward trend in fugacity ratios is found, since gas deposition is decreasing faster than volatilization. The North Sea is net volatilizational for PCB 153, with highest rates of volatilization to deposition found in the areas surrounding polluted British and continental river sources. Large quantities of PCB 153 entering through rivers lead to very high local rates of volatilization.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The concentrations of dissolved noble gases in water are widely used as a climate proxy to determine noble gas temperatures (NGTs); i.e., the temperature of the water when gas exchange last occurred. In this paper we make a step forward to apply this principle to fluid inclusions in stalagmites in order to reconstruct the cave temperature prevailing at the time when the inclusion was formed. We present an analytical protocol that allows us accurately to determine noble gas concentrations and isotope ratios in stalagmites, and which includes a precise manometrical determination of the mass of water liberated from fluid inclusions. Most important for NGT determination is to reduce the amount of noble gases liberated from air inclusions, as they mask the temperature-dependent noble gas signal from the water inclusions. We demonstrate that offline pre-crushing in air to subsequently extract noble gases and water from the samples by heating is appropriate to separate gases released from air and water inclusions. Although a large fraction of recent samples analysed by this technique yields NGTs close to present-day cave temperatures, the interpretation of measured noble gas concentrations in terms of NGTs is not yet feasible using the available least squares fitting models. This is because the noble gas concentrations in stalagmites are not only composed of the two components air and air saturated water (ASW), which these models are able to account for. The observed enrichments in heavy noble gases are interpreted as being due to adsorption during sample preparation in air, whereas the excess in He and Ne is interpreted as an additional noble gas component that is bound in voids in the crystallographic structure of the calcite crystals. As a consequence of our study's findings, NGTs will have to be determined in the future using the concentrations of Ar, Kr and Xe only. This needs to be achieved by further optimizing the sample preparation to minimize atmospheric contamination and to further reduce the amount of noble gases released from air inclusions.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Nitrogen is an essential nutrient. It is for human, animal and plants a constituent element of proteins and nucleic acids. Although the majority of the Earthâs atmosphere consists of elemental nitrogen (N2, 78 %) only a few microorganisms can use it directly. To be useful for higher plants and animals elemental nitrogen must be converted to a reactive oxidized form. This conversion happens within the nitrogen cycle by free-living microorganisms, symbiotic living Rhizobium bacteria or by lightning. Humans are able to synthesize reactive nitrogen through the Haber-Bosch process since the beginning of the 20th century. As a result food security of the world population could be improved noticeably. On the other side the increased nitrogen input results in acidification and eutrophication of ecosystems and in loss of biodiversity. Negative health effects arose for humans such as fine particulate matter and summer smog. Furthermore, reactive nitrogen plays a decisive role at atmospheric chemistry and global cycles of pollutants and nutritive substances.rnNitrogen monoxide (NO) and nitrogen dioxide (NO2) belong to the reactive trace gases and are grouped under the generic term NOx. They are important components of atmospheric oxidative processes and influence the lifetime of various less reactive greenhouse gases. NO and NO2 are generated amongst others at combustion process by oxidation of atmospheric nitrogen as well as by biological processes within soil. In atmosphere NO is converted very quickly into NO2. NO2 is than oxidized to nitrate (NO3-) and to nitric acid (HNO3), which bounds to aerosol particles. The bounded nitrate is finally washed out from atmosphere by dry and wet deposition. Catalytic reactions of NOx are an important part of atmospheric chemistry forming or decomposing tropospheric ozone (O3). In atmosphere NO, NO2 and O3 are in photosta¬tionary equilibrium, therefore it is referred as NO-NO2-O3 triad. At regions with elevated NO concentrations reactions with air pollutions can form NO2, altering equilibrium of ozone formation.rnThe essential nutrient nitrogen is taken up by plants mainly by dissolved NO3- entering the roots. Atmospheric nitrogen is oxidized to NO3- within soil via bacteria by nitrogen fixation or ammonium formation and nitrification. Additionally atmospheric NO2 uptake occurs directly by stomata. Inside the apoplast NO2 is disproportionated to nitrate and nitrite (NO2-), which can enter the plant metabolic processes. The enzymes nitrate and nitrite reductase convert nitrate and nitrite to ammonium (NH4+). NO2 gas exchange is controlled by pressure gradients inside the leaves, the stomatal aperture and leaf resistances. Plant stomatal regulation is affected by climate factors like light intensity, temperature and water vapor pressure deficit. rnThis thesis wants to contribute to the comprehension of the effects of vegetation in the atmospheric NO2 cycle and to discuss the NO2 compensation point concentration (mcomp,NO2). Therefore, NO2 exchange between the atmosphere and spruce (Picea abies) on leaf level was detected by a dynamic plant chamber system under labo¬ratory and field conditions. Measurements took place during the EGER project (June-July 2008). Additionally NO2 data collected during the ECHO project (July 2003) on oak (Quercus robur) were analyzed. The used measuring system allowed simultaneously determina¬tion of NO, NO2, O3, CO2 and H2O exchange rates. Calculations of NO, NO2 and O3 fluxes based on generally small differences (âˆmi) measured between inlet and outlet of the chamber. Consequently a high accuracy and specificity of the analyzer is necessary. To achieve these requirements a highly specific NO/NO2 analyzer was used and the whole measurement system was optimized to an enduring measurement precision.rnData analysis resulted in a significant mcomp,NO2 only if statistical significance of âˆmi was detected. Consequently, significance of âˆmi was used as a data quality criterion. Photo-chemical reactions of the NO-NO2-O3 triad in the dynamic plant chamberâs volume must be considered for the determination of NO, NO2, O3 exchange rates, other¬wise deposition velocity (vdep,NO2) and mcomp,NO2 will be overestimated. No significant mcomp,NO2 for spruce could be determined under laboratory conditions, but under field conditions mcomp,NO2 could be identified between 0.17 and 0.65 ppb and vdep,NO2 between 0.07 and 0.42 mm s-1. Analyzing field data of oak, no NO2 compensation point concentration could be determined, vdep,NO2 ranged between 0.6 and 2.71 mm s-1. There is increasing indication that forests are mainly a sink for NO2 and potential NO2 emissions are low. Only when assuming high NO soil emissions, more NO2 can be formed by reaction with O3 than plants are able to take up. Under these circumstance forests can be a source for NO2.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In vertebrates, efficient gas exchange depends primarily on establishment of a thin blood-gas barrier (BGB). The primordial air conduits of the developing avian lung are lined with a cuboidal epithelium that is ultimately converted to a squamous one that participates in the formation of the BGB. In the early stages, cells form intraluminal protrusions (aposomes) then transcellular double membranes separating the aposome from the basal part of the cell establish, unzip and sever the aposome from the cell. Additionally, better endowed cells squeeze out adjacent cells or such cells constrict spontaneously thus extruding the squeezed out aposome. Formation of vesicles or vacuoles below the aposome and fusion of such cavities with their neighboring cognates results in severing of the aposome. Augmentation of cavities and their subsequent fusion with the apical plasma membranes results in formation of numerous microfolds separating concavities on the apical part of the cell. Abscission of such microfolds results in a smooth squamous epithelium just before hatching.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The mismatching of alveolar ventilation and perfusion (VA/Q) is the major determinant of impaired gas exchange. The gold standard for measuring VA/Q distributions is based on measurements of the elimination and retention of infused inert gases. Conventional multiple inert gas elimination technique (MIGET) uses gas chromatography (GC) to measure the inert gas partial pressures, which requires tonometry of blood samples with a gas that can then be injected into the chromatograph. The method is laborious and requires meticulous care. A new technique based on micropore membrane inlet mass spectrometry (MMIMS) facilitates the handling of blood and gas samples and provides nearly real-time analysis. In this study we compared MIGET by GC and MMIMS in 10 piglets: 1) 3 with healthy lungs; 2) 4 with oleic acid injury; and 3) 3 with isolated left lower lobe ventilation. The different protocols ensured a large range of normal and abnormal VA/Q distributions. Eight inert gases (SF6, krypton, ethane, cyclopropane, desflurane, enflurane, diethyl ether, and acetone) were infused; six of these gases were measured with MMIMS, and six were measured with GC. We found close agreement of retention and excretion of the gases and the constructed VA/Q distributions between GC and MMIMS, and predicted PaO2 from both methods compared well with measured PaO2. VA/Q by GC produced more widely dispersed modes than MMIMS, explained in part by differences in the algorithms used to calculate VA/Q distributions. In conclusion, MMIMS enables faster measurement of VA/Q, is less demanding than GC, and produces comparable results.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

<p>Terrestrial ecosystems, occupying more than 25% of the Earth's surface, can serve as</p><p>`biological valves' in regulating the anthropogenic emissions of atmospheric aerosol</p><p>particles and greenhouse gases (GHGs) as responses to their surrounding environments.</p><p>While the signicance of quantifying the exchange rates of GHGs and atmospheric</p><p>aerosol particles between the terrestrial biosphere and the atmosphere is</p><p>hardly questioned in many scientic elds, the progress in improving model predictability,</p><p>data interpretation or the combination of the two remains impeded by</p><p>the lack of precise framework elucidating their dynamic transport processes over a</p><p>wide range of spatiotemporal scales. The diculty in developing prognostic modeling</p><p>tools to quantify the source or sink strength of these atmospheric substances</p><p>can be further magnied by the fact that the climate system is also sensitive to the</p><p>feedback from terrestrial ecosystems forming the so-called `feedback cycle'. Hence,</p><p>the emergent need is to reduce uncertainties when assessing this complex and dynamic</p><p>feedback cycle that is necessary to support the decisions of mitigation and</p><p>adaptation policies associated with human activities (e.g., anthropogenic emission</p><p>controls and land use managements) under current and future climate regimes.</p><p>With the goal to improve the predictions for the biosphere-atmosphere exchange</p><p>of biologically active gases and atmospheric aerosol particles, the main focus of this</p><p>dissertation is on revising and up-scaling the biotic and abiotic transport processes</p><p>from leaf to canopy scales. The validity of previous modeling studies in determining</p><p>iv</p><p>the exchange rate of gases and particles is evaluated with detailed descriptions of their</p><p>limitations. Mechanistic-based modeling approaches along with empirical studies</p><p>across dierent scales are employed to rene the mathematical descriptions of surface</p><p>conductance responsible for gas and particle exchanges as commonly adopted by all</p><p>operational models. Specically, how variation in horizontal leaf area density within</p><p>the vegetated medium, leaf size and leaf microroughness impact the aerodynamic attributes</p><p>and thereby the ultrane particle collection eciency at the leaf/branch scale</p><p>is explored using wind tunnel experiments with interpretations by a porous media</p><p>model and a scaling analysis. A multi-layered and size-resolved second-order closure</p><p>model combined with particle </p><p>uxes and concentration measurements within and</p><p>above a forest is used to explore the particle transport processes within the canopy</p><p>sub-layer and the partitioning of particle deposition onto canopy medium and forest</p><p>oor. For gases, a modeling framework accounting for the leaf-level boundary layer</p><p>eects on the stomatal pathway for gas exchange is proposed and combined with sap</p><p>ux measurements in a wind tunnel to assess how leaf-level transpiration varies with</p><p>increasing wind speed. How exogenous environmental conditions and endogenous</p><p>soil-root-stem-leaf hydraulic and eco-physiological properties impact the above- and</p><p>below-ground water dynamics in the soil-plant system and shape plant responses</p><p>to droughts is assessed by a porous media model that accommodates the transient</p><p>water </p><p>ow within the plant vascular system and is coupled with the aforementioned</p><p>leaf-level gas exchange model and soil-root interaction model. It should be noted</p><p>that tackling all aspects of potential issues causing uncertainties in forecasting the</p><p>feedback cycle between terrestrial ecosystem and the climate is unrealistic in a single</p><p>dissertation but further research questions and opportunities based on the foundation</p><p>derived from this dissertation are also brie</p><p>y discussed.</p>

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The sea-surface microlayer (SML) is at the upper- most surface of the ocean, linking the hydrosphere with the atmosphere. The presence and enrichment of organic compounds in the SML have been suggested to influence air- sea gas exchange processes as well as the emission of primary organic aerosols. Here, we report on organic matter components collected from an approximately 50µm thick SML and from the underlying water (ULW), ca. 20 cm below the SML, in December 2012 during the SOPRAN METEOR 91 cruise to the highly productive, coastal upwelling regime off the coast of Peru. Samples were collected at 37 stations including coastal upwelling sites and off-shore stations with less organic matter and were analyzed for total and dissolved high molecular weight (> 1 kDa) combined carbohydrates (TCCHO, DCCHO), free amino acids (FAA), total and dissolved hydrolyzable amino acids (THAA, DHAA), transparent exopolymer particles (TEP), Coomassie stainable particles (CSPs), total and dissolved organic carbon (TOC, DOC), total and dissolved nitrogen (TN, TDN), as well as bacterial and phytoplankton abundance. Our results showed a close coupling between organic matter concentrations in the water column and in the SML for almost all components except for FAA and DHAA that showed highest enrichment in the SML on average. Accumulation of gel particles (i.e., TEP and CSP) in the SML differed spatially. While CSP abundance in the SML was not related to wind speed, TEP abundance decreased with wind speed, leading to a depletion of TEP in the SML at about 5 m s-1 . Our study provides insight to the physical and biological control of organic matter enrichment in the SML, and discusses the potential role of organic matter in the SML for air-sea exchange processes.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Gases in the atmosphere/ocean have solubility that spans several orders of magnitude. Resistance in the molecular sublayer on the waterside limits the air-sea exchange of sparingly soluble gases such as SF6 and CO2. In contrast, both aerodynamic and molecular diffusive resistances on the airside limit the exchange of highly soluble gases (as well as heat). Here we present direct measurements of air-sea methanol and acetone transfer from two open cruises: the Atlantic Meridional Transect in 2012 and the High Wind Gas Exchange Study in 2013. The transfer of the highly soluble methanol is essentially completely airside controlled, while the less soluble acetone is subject to both airside and waterside resistances. Both compounds were measured concurrently using a proton-transfer-reaction mass spectrometer, with their fluxes quantified by the eddy covariance method. Up to a wind speed of 15 m s-1, observed air-sea transfer velocities of these two gases are largely consistent with the expected near linear wind speed dependence. Measured acetone transfer velocity is ~30% lower than that of methanol, which is primarily due to the lower solubility of acetone. From this difference we estimate the "zero bubble" waterside transfer velocity, which agrees fairly well with interfacial gas transfer velocities predicted by the COARE model. At wind speeds above 15 m s-1, the transfer velocities of both compounds are lower than expected in the mean. Air-sea transfer of sensible heat (also airside controlled) also appears to be reduced at wind speeds over 20 m s-1. During these conditions, large waves and abundant whitecaps generate large amounts of sea spray, which is predicted to alter heat transfer and could also affect the air-sea exchange of soluble trace gases. We make an order of magnitude estimate for the impacts of sea spray on air-sea methanol transfer.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Gases in the atmosphere/ocean have solubility that spans several orders of magnitude. Resistance in the molecular sublayer on the waterside limits the air-sea exchange of sparingly soluble gases such as SF6 and CO2. In contrast, both aerodynamic and molecular diffusive resistances on the airside limit the exchange of highly soluble gases (as well as heat). Here we present direct measurements of air-sea methanol and acetone transfer from two open cruises: the Atlantic Meridional Transect in 2012 and the High Wind Gas Exchange Study in 2013. The transfer of the highly soluble methanol is essentially completely airside controlled, while the less soluble acetone is subject to both airside and waterside resistances. Both compounds were measured concurrently using a proton-transfer-reaction mass spectrometer, with their fluxes quantified by the eddy covariance method. Up to a wind speed of 15 m s-1, observed air-sea transfer velocities of these two gases are largely consistent with the expected near linear wind speed dependence. Measured acetone transfer velocity is ~30% lower than that of methanol, which is primarily due to the lower solubility of acetone. From this difference we estimate the "zero bubble" waterside transfer velocity, which agrees fairly well with interfacial gas transfer velocities predicted by the COARE model. At wind speeds above 15 m s-1, the transfer velocities of both compounds are lower than expected in the mean. Air-sea transfer of sensible heat (also airside controlled) also appears to be reduced at wind speeds over 20 m s-1. During these conditions, large waves and abundant whitecaps generate large amounts of sea spray, which is predicted to alter heat transfer and could also affect the air-sea exchange of soluble trace gases. We make an order of magnitude estimate for the impacts of sea spray on air-sea methanol transfer.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Arctic regions are expected to experience an increase in both temperature and precipitation over the coming decades, which is likely to impact vegetation dynamics and greenhouse gas exchange. To test this response, an experiment was installed at the Cape Bounty Arctic Watershed Observatory, on Melville Island, NU, in 2008 as part of the International Tundra Experiment (ITEX). Snow fences and open top chambers (OTCs) were used to manipulate snow depth and air temperature, respectively. Unlike most ITEX sites to date, enhanced temperature and snowfall were combined here in a factorial design with eight replicates. As an added control, four plots were established well outside the enhanced snow area. Senescence date was recorded at the end of the season, and at the peak of the growing season a vegetation survey was conducted within each plot in order to determine the total percent cover of each plot, as well as the percent cover of individual species. Carbon dioxide (CO2) exchange was also measured within each plot throughout the growing season. The date of senescence occurred significantly earlier in plots which had not been manipulated in any way, compared to all other treatments for all species. Salix arctica showed the greatest increase in cover over time at the species level. Lichen cover increased significantly in the deepened snow plots, and in general there were significant increases in percent cover in some functional groups over time. During June and into July the net CO2 flux was to the atmosphere. It was not until July 27 that these ecosystems became net carbon sinks. However, warming alone resulted in the ecosystem acting as a significant net carbon sink for the entire growing season. Plots exposed to warming alone were estimated to have removed approximately 19.94 g C m-2 from the atmosphere, whereas all other treatments were very similar to one another and estimated to have added approximately 3.12 g C m-2 to the atmosphere. Active layer depth and soil temperatures suggest that plots within the ambient snow zone may be receiving some additional snow due to their proximity to the fences. CO2 fluxes measured within the outer control plots suggest that the effect of warming alone could lead to this ecosystem being an even stronger net C sink under truly ambient snow conditions.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Nitrogen fertilization from biological source is an uncommon practice for peanut growers due to the limited results, mainly in environments with water restriction. In this study, the response of a commercial Bradyrhizobium was evaluated on the nodulation and production of peanuts grown in sandy and medium textured soils. Two experiments using different soils were carried out in the field during the dry season, in Campina Grande, Paraíba State, Brazil. Three peanut genotypes were submitted to the following treatments: 1-no nitrogen fertilization (control), 2- chemical fertilization (ammonium sulfate) and 3- inoculation with Bradyrhizobium [commercial strain BR 1405 (SEMIA 6144)]. A completely randomized 3x3 factorial design was adopted with five repetitions for both experiments. The evaluates variables were: height of the main stem, number of nodes/plant, root length, root dry weight, weight of pods/plant and number of pods/plant. In addition, gas exchanges were estimated using IRGA apparatus. Both genotypes (BRS Havana and L7 Bege) were benefited in relation to production due to an inoculation with SEMIA 6144. No physiological response was verified in genotypes or N-treatments to gas exchange, excepting for the Ci/Ca ratio in the medium textured soil experiment. BRS Havana showed low Ci/Ca ratio in Bradyrhizobium treatment, indicating that SEMIA 6144 improved the plants photosynthetic efficiency.