966 resultados para GPS, BLE, Riconoscimento, Immagini, AR
Resumo:
Global Navigation Satellite Systems (GNSS)-based observation systems can provide high precision positioning and navigation solutions in real time, in the order of subcentimetre if we make use of carrier phase measurements in the differential mode and deal with all the bias and noise terms well. However, these carrier phase measurements are ambiguous due to unknown, integer numbers of cycles. One key challenge in the differential carrier phase mode is to fix the integer ambiguities correctly. On the other hand, in the safety of life or liability-critical applications, such as for vehicle safety positioning and aviation, not only is high accuracy required, but also the reliability requirement is important. This PhD research studies to achieve high reliability for ambiguity resolution (AR) in a multi-GNSS environment. GNSS ambiguity estimation and validation problems are the focus of the research effort. Particularly, we study the case of multiple constellations that include initial to full operations of foreseeable Galileo, GLONASS and Compass and QZSS navigation systems from next few years to the end of the decade. Since real observation data is only available from GPS and GLONASS systems, the simulation method named Virtual Galileo Constellation (VGC) is applied to generate observational data from another constellation in the data analysis. In addition, both full ambiguity resolution (FAR) and partial ambiguity resolution (PAR) algorithms are used in processing single and dual constellation data. Firstly, a brief overview of related work on AR methods and reliability theory is given. Next, a modified inverse integer Cholesky decorrelation method and its performance on AR are presented. Subsequently, a new measure of decorrelation performance called orthogonality defect is introduced and compared with other measures. Furthermore, a new AR scheme considering the ambiguity validation requirement in the control of the search space size is proposed to improve the search efficiency. With respect to the reliability of AR, we also discuss the computation of the ambiguity success rate (ASR) and confirm that the success rate computed with the integer bootstrapping method is quite a sharp approximation to the actual integer least-squares (ILS) method success rate. The advantages of multi-GNSS constellations are examined in terms of the PAR technique involving the predefined ASR. Finally, a novel satellite selection algorithm for reliable ambiguity resolution called SARA is developed. In summary, the study demonstrats that when the ASR is close to one, the reliability of AR can be guaranteed and the ambiguity validation is effective. The work then focuses on new strategies to improve the ASR, including a partial ambiguity resolution procedure with a predefined success rate and a novel satellite selection strategy with a high success rate. The proposed strategies bring significant benefits of multi-GNSS signals to real-time high precision and high reliability positioning services.
Resumo:
In this paper, we present a monocular vision based autonomous navigation system for Micro Aerial Vehicles (MAVs) in GPS-denied environments. The major drawback of monocular systems is that the depth scale of the scene can not be determined without prior knowledge or other sensors. To address this problem, we minimize a cost function consisting of a drift-free altitude measurement and up-to-scale position estimate obtained using the visual sensor. We evaluate the scale estimator, state estimator and controller performance by comparing with ground truth data acquired using a motion capture system. All resources including source code, tutorial documentation and system models are available online.
Resumo:
With the projected increase in older adults, the older driver population is estimated to be the fastest growing cohort of drivers among many developed countries. The increased physical fragility associated with the aging process make older adults who drive private automobiles a vulnerable road user group. Much of the current research on older drivers’ behaviours and practices rely on self-report data. This paper explores the utility of in-vehicle devices (Global Positioning Systems and recording accelerometers) in assessing older drivers’ habitual driving behaviours. Seventy-eight older drivers (above 65 years of age), from the Australian Capital Territory, Australia, participated in the current study. The driving behaviours and practices of these participants were prospectively assessed over a two-week period. The use of combined GPS and recording accelerometers to improve understanding of older drivers’ driving behaviours show promise within the current study. The challenges of using multiple in-vehicle devices in assessing driving beahaviours and performances within this cohort will be discussed. Based on the current findings, recommendations for future research regarding the use of in-vehicle devices among the older driver cohort are proposed.
Resumo:
BACKGROUND Inconsistencies in research findings on the impact of the built environment on walking across the life course may be methodologically driven. Commonly used methods to define 'neighbourhood', from which built environment variables are measured, may not accurately represent the spatial extent to which the behaviour in question occurs. This paper aims to provide new methods for spatially defining 'neighbourhood' based on how people use their surrounding environment. RESULTS Informed by Global Positioning Systems (GPS) tracking data, several alternative neighbourhood delineation techniques were examined (i.e., variable width, convex hull and standard deviation buffers). Compared with traditionally used buffers (i.e., circular and polygon network), differences were found in built environment characteristics within the newly created 'neighbourhoods'. Model fit statistics indicated that exposure measures derived from alternative buffering techniques provided a better fit when examining the relationship between land-use and walking for transport or leisure. CONCLUSIONS This research identifies how changes in the spatial extent from which built environment measures are derived may influence walking behaviour. Buffer size and orientation influences the relationship between built environment measures and walking for leisure in older adults. The use of GPS data proved suitable for re-examining operational definitions of neighbourhood.
Resumo:
The editorial indicates that the issue contains a diverse array of project reports, the theme of sustainability can be discerned, with ethical and aspirational aspects evident. Aspects of what is termed a 'sustainability project’ include a commitment to change, to meaningfully involve people over time, having an eye to detail, fostering creativity, embedding action learning and action research qualities into the systems we work in, producing resources and artifacts that can support communities beyond the confines of a particular project, and articulating models and frameworks that help platform the efforts of others.
Resumo:
A new test of hypothesis for classifying stationary time series based on the bias-adjusted estimators of the fitted autoregressive model is proposed. It is shown theoretically that the proposed test has desirable properties. Simulation results show that when time series are short, the size and power estimates of the proposed test are reasonably good, and thus this test is reliable in discriminating between short-length time series. As the length of the time series increases, the performance of the proposed test improves, but the benefit of bias-adjustment reduces. The proposed hypothesis test is applied to two real data sets: the annual real GDP per capita of six European countries, and quarterly real GDP per capita of five European countries. The application results demonstrate that the proposed test displays reasonably good performance in classifying relatively short time series.
Resumo:
The Ar/O2plasma needle in the induction of A549 cancer cells apoptosis process is studied by means of real-time observation. The entire process of programmed cell death is observed. The typical morphological changes of A549 apoptosis are detected by 4′, 6-diamidino-2-phenylindole staining, for example, chromatin condensation and nuclear fragmentation. Cell viability is determined and quantified by neutral red uptake assay, and the survival rate of A549 from Ar/O2plasmas is presented. Further spectral analysis indicates the reactive species, including O and OH play crucial roles in the cell inactivation.
Resumo:
The formation of arrays of vertically aligned nanotips on a moderately heated (up to 500 degrees C) Si surface exposed to reactive low-temperature radio frequency (RF) Ar+H(2) plasmas is studied. It is demonstrated that the nanotip surface density, aspect ratio and height dispersion strongly depend on the substrate temperature, discharge power, and gas composition. It is shown that nanotips with aspect ratios from 2.0 to 4.0 can only be produced at a higher RF power density (41.7 mW cm(-3)) and a hydrogen content of about 60%, and that larger aspect ratios can be achieved at substrate temperatures of about 300 degrees C. The use of higher (up to 500 degrees C) temperatures leads to a decrease of the aspect ratio but promotes the formation of more uniform arrays with the height dispersion decreasing to 1.5. At lower (approximately 20 mW cm(-3)) RF power density, only semispherical nanodots can be produced. Based on these experimental results, a nanotip formation scenario is proposed suggesting that sputtering, etching, hydrogen termination, and atom/radical re-deposition are the main concurrent mechanisms for the nanostructure formation. Numerical calculations of the ion flux distribution and hydrogen termination profiles can be used to predict the nanotip shapes and are in a good agreement with the experimental results. This approach can be applied to describe the kinetics of low-temperature formation of other nanoscale materials by plasma treatment.
Resumo:
Ag nanoparticles and Fe-coated Si micrograins were separately deposited onto Si(1 0 0) surfaces and then exposed to an Ar + CH4 microplasma at atmospheric pressure. For the Ag nanoparticles, self-organized carbon nanowires, up to 400 nm in length were produced, whereas for the Fe-coated Si micrograins carbon connections with the length up to 100 μm were synthesized on the plasma-exposed surface area of about 0.5 mm2. The experiment has revealed that long carbon connections and short nanowires demonstrate quite similar behavior and structure. While most connections/nanowires tended to link the nearest particles, some wires were found to 'dissolve' into the substrate without terminating at the second particle. Both connections and nanowires are mostly linear, but long carbon connections can form kinks which were not observed in the carbon nanowire networks. A growth scenario explaining the carbon structure nucleation and growth is proposed. Multiscale numerical simulations reveal that the electric field pattern around the growing connections/nanowires strongly affects the surface diffusion of carbon adatoms, the main driving force for the observed self-organization in the system. The results suggest that the microplasma-generated surface charges can be used as effective controls for the self-organized formation of complex carbon-based nano-networks for integrated nanodevices.
Inductively coupled Ar/CH₄/H₂plasmas for low-temperature deposition of ordered carbon nanostructures
Resumo:
The study of inductively coupled Ar/CH 4/H 2 plasmas in the plasma enhanced chemical vapor deposition (PECVD) of self-assembled carbon nanostructures (CN) was presented. A spatially averaged (global) discharge model was developed to study the densities and fluxes of the radical neutrals and charged species, the effective electron temperature, and methane conversion factors under various conditions. It was found that the deposited cation fluxes in the PECVD of CNs generally exceed those of the radical neutrals. The agreement with the optical emission spectroscopy (OES) and quadrupole mass spectrometry (QMS) was also derived through numerical results.
Resumo:
Understanding the generation of reactive species in a plasma is an important step towards creating reliable and robust plasma-aided nanofabrication processes. A two-dimensional fluid simulation of the number densities of surface preparation species in a low-temperature, low-pressure, non-equilibrium Ar+H2 plasma is conducted. The operating pressure and H2 partial pressure have been varied between 70-200 mTorr and 0.1-50%, respectively. An emphasis is placed on the application of these results to nanofabrication. A reasonable balance between operating pressures and H 2 partial pressures that would optimize the number densities of the two working units largely responsible for activation and passivation of surface dangling bonds (Ar+ and H respectively) in order to achieve acceptable rates of surface activation and passivation is obtained. It is found that higher operating pressures (150-200 mTorr) and lower H2 partial pressures (∼5%) are required in order to ensure high number densities of Ar+ and H species. This paper contributes to the improvement of the controllability and predictability of plasma-based nanoassembly processes.
Resumo:
The results of two-dimensional fluid simulation of number densities and fluxes of the main building blocks and surface preparation species involved in nanoassembly of carbon-based nanopatterns in Ar+H2+C2H2 reactive plasmas are reported. It is shown that the process parameters and non-uniformity of surface fluxes of each particular species may affect the targeted nanopattern quality. The results can be used to improve predictability of plasma-aided nanofabrication processes and optimize the parameters of plasma nanotools.KGaA, Weinheim.
Resumo:
This paper provides a three-layered framework to monitor the positioning performance requirements of Real-time Relative Positioning (RRP) systems of the Cooperative Intelligent Transport Systems (C-ITS) that support Cooperative Collision Warning (CCW) applications. These applications exploit state data of surrounding vehicles obtained solely from the Global Positioning System (GPS) and Dedicated Short-Range Communications (DSRC) units without using other sensors. To this end, the paper argues the need for the GPS/DSRC-based RRP systems to have an autonomous monitoring mechanism, since the operation of CCW applications is meant to augment safety on roads. The advantages of autonomous integrity monitoring are essential and integral to any safety-of-life system. The autonomous integrity monitoring framework proposed necessitates the RRP systems to detect/predict the unavailability of their sub-systems and of the integrity monitoring module itself, and, if available, to account for effects of data link delays and breakages of DSRC links, as well as of faulty measurement sources of GPS and/or integrated augmentation positioning systems, before the information used for safety warnings/alarms becomes unavailable, unreliable, inaccurate or misleading. Hence, a monitoring framework using a tight integration and correlation approach is proposed for instantaneous reliability assessment of the RRP systems. Ultimately, using the proposed framework, the RRP systems will provide timely alerts to users when the RRP solutions cannot be trusted or used for the intended operation.
Resumo:
Young males are over-represented in road crashes. Part of the problem is their proneness to boredom, a hardwired personality factor that can lead to risky driving. This paper presents a theoretical understanding of boredom in the driving context and demonstrates convincing arguments to investigate the role of boredom further. Specifically, this paper calls for the design of innovative technologies and applications that make safe driving more pleasurable and stimulating for young males, e.g., by applying gamification techniques. We propose two design concepts through the following questions: A. Can the simulation of risky driving reduce actual risky driving? B. Can the replacement of risky driving stimuli with alternative stimuli reduce risky driving? We argue that considering these questions in the future design of automotive user-interfaces and personal ubiquitous computing devices could effectively reduce risky driving behaviours among young males.
Resumo:
"What is Bluebird AR? Bluebird AR was the ABC's alternate reality drama set around the leak of Bluebird, a clandestine geoengineering initiative created by eco-billionaire Harrison Wyld. Proposing a fictional scenario set against a backdrop of real world possibilities, Bluebird AR took some of the conventions of the well-established alternate reality game (ARG) genre and pulled them into the relatively new area of online drama, to create a hybrid entertainment form best described as 'participatory drama'. With Bluebird AR's interactive narrative centred on the experimental science of geoengineering, the deliberate manipulation of the Earth's atmosphere to counteract global warming, the events and characters in the Bluebird story were entirely fictional but fused with reality online. Inhabiting a mixture of third party social media spaces and websites created by the ABC, the story incorporated real online articles, scientific journals, media and debate around geoengineering. In an Australian first, ABC Innovation launched Bluebird AR on 27 April 2010, with a 6 week live phase. Audience members were invited to play collectively to help 'unlock the drama' and push forward the emerging narrative, or passively watch the story unfold in real-time across the internet. Bluebird AR subverted ARG conventions with the high quality of its production and assets, and raised the stakes for online drama with its level of audience participation." © 2014 ABC "Introduction One of the most exciting creative challenges of producing Bluebird AR was formulating the broad array of visual styles and treatments required for the project's diverse range of content. Many assets also needed to translate well not only online but across other media, including television and print. With the project's producers keen to create a visually rich narrative with high production values from the outset, inspiration for the production design for various aspects of the Bluebird story began in the earliest pitching phase in September 2008. Particular visual treatments and styles for Bluebird's characters, their web spaces and real world possessions were formulated concurrently with the creation of their profiles. Ideas around how various clues and gameplay spaces might look and feel were also explored at this early stage. Bluebird AR's small but tight creative team produced 7 website designs and brands, motion graphics for title sequences and logo animations, rotoscope animation, 3D compositing and animation, 3D wireframes and schematics, countless Photoshop composites, and a vast array of character assets for the DC (including Kyle's Bluebird Labs security pass and resignation letter, Kruger's American and Russia passports and birth certificate, Harrison's divorce papers, and more)…" © 2014 ABC