956 resultados para GABA-A receptors
Resumo:
Combining transcranial magnetic stimulation (TMS) and electroencephalography (EEG) constitutes a powerful tool to directly assess human cortical excitability and connectivity. TMS of the primary motor cortex elicits a sequence of TMS-evoked EEG potentials (TEPs). It is thought that inhibitory neurotransmission through GABA-A receptors (GABAAR) modulates early TEPs (<50 ms after TMS), whereas GABA-B receptors (GABABR) play a role for later TEPs (at ∼100 ms after TMS). However, the physiological underpinnings of TEPs have not been clearly elucidated yet. Here, we studied the role of GABAA/B-ergic neurotransmission for TEPs in healthy subjects using a pharmaco-TMS-EEG approach. In Experiment 1, we tested the effects of a single oral dose of alprazolam (a classical benzodiazepine acting as allosteric-positive modulator at α1, α2, α3, and α5 subunit-containing GABAARs) and zolpidem (a positive modulator mainly at the α1 GABAAR) in a double-blind, placebo-controlled, crossover study. In Experiment 2, we tested the influence of baclofen (a GABABR agonist) and diazepam (a classical benzodiazepine) versus placebo on TEPs. Alprazolam and diazepam increased the amplitude of the negative potential at 45 ms after stimulation (N45) and decreased the negative component at 100 ms (N100), whereas zolpidem increased the N45 only. In contrast, baclofen specifically increased the N100 amplitude. These results provide strong evidence that the N45 represents activity of α1-subunit-containing GABAARs, whereas the N100 represents activity of GABABRs. Findings open a novel window of opportunity to study alteration of GABAA-/GABAB-related inhibition in disorders, such as epilepsy or schizophrenia.
Resumo:
Postmortem prefrontal cortices (PFC) (Brodmann’s areas 10 and 46), temporal cortices (Brodmann’s area 22), hippocampi, caudate nuclei, and cerebella of schizophrenia patients and their matched nonpsychiatric subjects were compared for reelin (RELN) mRNA and reelin (RELN) protein content. In all of the brain areas studied, RELN and its mRNA were significantly reduced (≈50%) in patients with schizophrenia; this decrease was similar in patients affected by undifferentiated or paranoid schizophrenia. To exclude possible artifacts caused by postmortem mRNA degradation, we measured the mRNAs in the same PFC extracts from γ-aminobutyric acid (GABA)A receptors α1 and α5 and nicotinic acetylcholine receptor α7 subunits. Whereas the expression of the α7 nicotinic acetylcholine receptor subunit was normal, that of the α1 and α5 receptor subunits of GABAA was increased when schizophrenia was present. RELN mRNA was preferentially expressed in GABAergic interneurons of PFC, temporal cortex, hippocampus, and glutamatergic granule cells of cerebellum. A protein putatively functioning as an intracellular target for the signal-transduction cascade triggered by RELN protein released into the extracellular matrix is termed mouse disabled-1 (DAB1) and is expressed at comparable levels in the neuroplasm of the PFC and hippocampal pyramidal neurons, cerebellar Purkinje neurons of schizophrenia patients, and nonpsychiatric subjects; these three types of neurons do not express RELN protein. In the same samples of temporal cortex, we found a decrease in RELN protein of ≈50% but no changes in DAB1 protein expression. We also observed a large (up to 70%) decrease of GAD67 but only a small decrease of GAD65 protein content. These findings are interpreted within a neurodevelopmental/vulnerability “two-hit” model for the etiology of schizophrenia.
Resumo:
Spastic (spa), spasmodic (spd), and oscillator (ot) mice have naturally occurring glycine receptor ( GlyR) mutations, which manifest as motor deficits and an exaggerated startle response. Using whole-cell recording in hypoglossal motoneurons, we compared the physiological mechanisms by which each mutation alters GlyR function. Mean glycinergic miniature IPSC ( mIPSC) amplitude and frequency were dramatically reduced (> 50%) compared with controls for each mutant. mIPSC decay times were unchanged in spa/spa (4.5 +/- 0.3 vs 4.7 +/- 0.2 ms), reduced in spd/spd (2.7 +/- 0.2 vs 4.7 +/- 0.2 ms), and increased in ot/ot (12.3 +/- 1.2 vs 4.8 +/- 0.2 ms). Thus, in spastic, GlyRs are functionally normal but reduced in number, whereas in spasmodic, GlyR kinetics is faster. The oscillator mutation results in complete absence of alpha 1-containing GlyRs; however, some non-alpha 1-containing GlyRs persist at synapses. Fluctuation analysis of membrane current, induced by glycine application to outside-out patches, showed that mean single-channel conductance was increased in spa/spa (64.2 +/- 4.9 vs 36.1 +/- 1.4 pS), but unchanged in spd/spd (32.4 +/- 2.1 vs 35.3 +/- 2.1 pS). GlyR-mediated whole-cell currents in spa/spa exhibited increased picrotoxin sensitivity (27 vs 71% block for 100 mu M), indicating alpha 1 homomeric GlyR expression. The picrotoxin sensitivity of evoked glycinergic IPSCs and conductance of synaptic GlyRs, as determined by nonstationary variance analysis, were identical for spa/spa and controls. Together, these findings show the three mutations disrupt GlyR-mediated inhibition via different physiological mechanisms, and the spastic mutation results in compensatory alpha 1 homomeric GlyRs at extrasynaptic loci.
Resumo:
Ginkgolides are potent blockers of the glycine receptor Cl- channel (GlyR) pore. We sought to identify their binding sites by comparing the effects of ginkgolides A, B and C and bilobalide on alpha 1, alpha 2, alpha 1 beta and alpha 2 beta GlyRs. Bilobalide sensitivity was drastically reduced by incorporation of the beta subunit. In contrast, the sensitivities to ginkgolides B and C were enhanced by beta subunit expression. However, ginkgolide A sensitivity was increased in the alpha 2 beta GlyR relative to the alpha 2 GlyR but not in the alpha 1 beta GlyR relative to the alpha 1 GlyR. We hypothesised that the subunit-specific differences were mediated by residue differences at the second transmembrane domain 2' and 6' pore-lining positions. The increased ginkgolide A sensitivity of the alpha 2 beta GlyR was transferred to the alpha 1 beta GlyR by the G2'A (alpha 1 to alpha 2 subunit) substitution. In addition, the alpha 1 subunit T6'F mutation abolished inhibition by all ginkgolides. As the ginkgolides share closely related structures, their molecular interactions with pore-lining residues were amenable to mutant cycle analysis. This identified an interaction between the variable R2 position of the ginkgolides and the 2' residues of both alpha 1 and beta subunits. These findings provide strong evidence for ginkgolides binding at the 2' pore-lining position.
Resumo:
GABA-containing interneurons are a diverse population of cells whose primary mode of action in the mature nervous system is inhibition of postsynaptic target neurons. Using paired recordings from parvalbumin-positive interneurons in the basolateral amygdala, we show that, in a subpopulation of interneurons, single action potentials in one interneuron evoke in the postsynaptic interneuron a monosynaptic inhibitory synaptic current, followed by a disynaptic excitatory glutamatergic synaptic current. Interneuron-evoked glutamatergic events were blocked by antagonists of either AMPA/kainate or GABA(A) receptors, and could be seen concurrently in both presynaptic and postsynaptic interneurons. These results show that single action potentials in a GABAergic interneuron can drive glutamatergic principal neurons to threshold, resulting in both feedforward and feedback excitation. In interneuron pairs that both receive glutamatergic inputs after an interneuron spike, electrical coupling and bidirectional GABAergic connections occur with a higher probability relative to other interneuron pairs. We propose that this form of GABAergic excitation provides a means for the reliable and specific recruitment of homogeneous interneuron networks in the basal amygdala.
Resumo:
Chronic alcoholism leads to localized brain damage, which is prominent in superior frontal cortex but mild in motor cortex. The likelihood of developing alcohol dependence is associated with genetic markers. GABA-A receptor expression differs between alcoholics and controls, whereas glutamate receptor differences are muted. We determined whether genotype differentiated the localized expression of glutamate N-methyl-D-aspartate (NMDA) and GABA-A receptors to influence the severity of alcohol-induced brain damage. Cerebral cortex tissue was obtained at autopsy from alcoholics without disease comorbid with alcoholics, alcoholics with cirrhosis, and matched controls. DRD2A, DRD2B, GABRB2, SLC1A2, and 5HTT genotypes did not divide alcoholic cases and controls on NMDA receptor parameters. In contrast, a specific alcohol dehydrogenase (ADHIC) genotype interacted significantly with NMDA efficacy and affinity in a region-specific manner SLC1A2 (glutamate transporter-2) genotype interacted significantly with local GABAA receptor b subunit mRNA expression, and ADHIC, DRD2B, SLC1A2, and APOE genotypes with b subunit isoform protein expression. In the latter instance, possession of the alcoholism- associated allele altered b isoform protein expression patterns toward a less-efficacious form of the GABA-A receptor in the pathologically vulnerable region. GABRB2 and GRIN2B (NMDA receptor 2B subunit} Genotypes were associated with significant regional difference in the pattern of b subunit protein isoform expression, but this was not influenced by alcoholism status. Genotype may modulate amino acid transmission locally so as to mediate neuronal vulnerability. This has implications for the effectiveness of pharmacological interventions aimed at ameliorating brain damage and, possibly, dependence.
Resumo:
At rest, the primary motor cortex (M1) exhibits spontaneous neuronal network oscillations in the beta (15–30 Hz) frequency range, mediated by inhibitory interneuron drive via GABA-A receptors. However, questions remain regarding the neuropharmacological basis of movement related oscillatory phenomena, such as movement related beta desynchronisation (MRBD), post-movement beta rebound (PMBR) and movement related gamma synchronisation (MRGS). To address this, we used magnetoencephalography (MEG) to study the movement related oscillatory changes in M1 cortex of eight healthy participants, following administration of the GABA-A modulator diazepam. Results demonstrate that, contrary to initial hypotheses, neither MRGS nor PMBR appear to be GABA-A dependent, whilst the MRBD is facilitated by increased GABAergic drive. These data demonstrate that while movement-related beta changes appear to be dependent upon spontaneous beta oscillations, they occur independently of one other. Crucially, MRBD is a GABA-A mediated process, offering a possible mechanism by which motor function may be modulated. However, in contrast, the transient increase in synchronous power observed in PMBR and MRGS appears to be generated by a non-GABA-A receptor mediated process; the elucidation of which may offer important insights into motor processes.
Resumo:
Predicted future CO2 levels have been found to alter sensory responses and behaviour of marine fishes. Changes include increased boldness and activity, loss of behavioural lateralization, altered auditory preferences and impaired olfactory function. Impaired olfactory function makes larval fish attracted to odours they normally avoid, including ones from predators and unfavourable habitats. These behavioural alterations have significant effects on mortality that may have far-reaching implications for population replenishment, community structure and ecosystem function. However, the underlying mechanism linking high CO2 to these diverse responses has been unknown. Here we show that abnormal olfactory preferences and loss of behavioural lateralization exhibited by two species of larval coral reef fish exposed to high CO2 can be rapidly and effectively reversed by treatment with an antagonist of the GABA-A receptor. GABA-A is a major neurotransmitter receptor in the vertebrate brain. Thus, our results indicate that high CO2 interferes with neurotransmitter function, a hitherto unrecognized threat to marine populations and ecosystems. Given the ubiquity and conserved function of GABA-A receptors, we predict that rising CO2 levels could cause sensory and behavioural impairment in a wide range of marine species, especially those that tightly control their acid-base balance through regulatory changes in HCO3 and Cl levels.
Resumo:
Abstract : GABA, the primary inhibitory neurotransmitter, and its receptors play an important role in modulating neuronal activity in the central nervous system and are implicated in many neurological disorders. In this study, GABAA and GABAB receptor subunit expression was visualized by immunohistochemistry in human auditory areas TC (= primary auditory area), TB, and TA. Both hemispheres from nine neurologically normal subjects and from four patients with subacute or chronic stroke were included. In normal brains, GABAA receptor subunit (α1, α2, & β2/3) labeling produced neuropil staining throughout all cortical layers as well as labeling fibers and neurons in layer VI for all auditory areas. Densitometry profiles displayed differences in GABAA subunit expression between primary and non-primary areas. In contrast to the neuropil labeling of GABAA subunits, GABAB1 and GABAB2 subunit immunoreactivity was revealed on neuronal somata and proximal dendritic shafts of pyramidal and non-pyramidal neurons in layers II-III, more strongly on supra- than in infragranular layers. No differences were observed between auditory areas. In stroke cases, we observed a downregulation of the GABAA receptor α2 subunit in granular and infragranular layers, while the other GABAA and the two GABAB receptor subunits remained unchanged. Our results demonstrate a strong presence of GABAA and GABAB receptors in the human auditory cortex, suggesting a crucial role of GABA in shaping auditory responses in the primary and non-primary auditory areas. The differential laminar and area expression of GABAA subunits that we have found in the auditory areas and which is partially different from that in other cortical areas speaks in favor of a fine turning of GABA-ergic transmission in these different compartments. In contrast, GABAB expression displayed laminar, but not areal differences; its basic pattern was also very similar to that of other cortical areas, suggesting a more uniform role within the cerebral cortex. In subacute and chronic stroke, the selective GABAA α2 subunit downregulation is likely to influence postlesional plasticity and susceptibility to medication. The absence of changes in the GABAB receptors suggests different regulation than in other pathological conditions, such as epilepsy, schizophrenia or bipolar disorder, in which a downregulation has been reported. Résumé : GABA, le principal neurotransmetteur inhibiteur, et ses récepteurs jouent un rôle important en tant que modulateur de l'activité neuronale dans le système nerveux central et sont impliqués dans de nombreux désordres neurologiques. Dans cette étude, l'expression des sous-unités des récepteur GABAA et GABAB a été visualisée par immunohistochimie dans les aires auditives du cortex humains: le TC (= aire auditif primaire), le TB, et le TA. Les deux hémisphères de neuf sujets considérés normaux du point de vue neurologique et de quatre patients ayant subis un accident cérébro-vasculaire et se trouvant dans la phase subaiguë ou chronique étaient inclues. Dans les cerveaux normaux, les immunohistochimies contre les sous-unités α1, α2, & β2/3 du récepteur GABAA ont marqué le neuropil dans toutes les couches corticales ainsi que les fibres et les neurones de la couche VI dans toutes les aires auditives. Le profile densitométrique montre des différences dans l'expression des sous-unités du récepteur GABAA entre les aires primaires et non-primaires. Contrairement au marquage de neuropil par les sous-unités du recepteur GABAA, 1'immunoréactivité des sous-unités GABAB1 et GABAB2 a été révélée sur les corps cellulaires neuronaux et les dendrites proximaux des neurones pyramidaux et non-pyramidaux dans les couches II-III et est plus dense dans les couches supragranulaires que dans les couches infragranulaires. Aucune différence n'a été observée entre les aires auditives. Dans des cas lésionnels, nous avons observé une diminution de la sous-unité α2 du récepteur GABAA dans les couches granulaires et infragranulaires, alors que le marquage des autres sous-unités du récepteur GABAA et des deux sous-unités de récepteur GABAB reste inchangé. Nos résultats démontrent une présence forte des récepteurs GABAA et GABAB dans le cortex auditif humain, suggérant un rôle crucial du neurotransmetteur GABA dans la formation de la réponse auditive dans les aires auditives primaires et non-primaires. L'expression différentielle des sous-unités de GABAA entre les couches corticales et entre les aires auditives et qui est partiellement différente de celle observée dans d'autres aires corticales préconise une modulation fine de la transmission GABA-ergic en ces différents compartiments. En revanche, l'expression de GABAB a montré des différences laminaires, mais non régionales ; son motif d'expression de base est également très semblable à celui d'autres aires corticales, suggérant un rôle plus uniforme dans le cortex cérébral. Dans les phases subaiguë et chronique des accidents cérébro-vasculaires, la diminution sélective de la sous-unité α2 du recepteur GABAA est susceptible d'influencer la plasticité et la susceptibilité postlésionnelle au médicament. L'absence de changement pour les récepteurs GABAB suggère que le récepteur est régulé différemment après un accident cerebro-vasculaire par rapport à d'autres conditions pathologiques, telles que l'épilepsie, la schizophrénie ou le désordre bipolaire, dans lesquels une diminution de ces sous-unités a été rapportée.
Resumo:
Objective: Converging evidence speak in favor of an abnormal susceptibility to oxidative stress in schizophrenia. A decreased level of glutathione (GSH), the principal non-protein antioxidant and redox regulator, was observed both in cerebrospinal-fluid and prefrontal cortex of schizophrenia patients (Do et al., 2000). Results: Schizophrenia patients have an abnormal GSH synthesis most likely of genetic origin: Two independent case-control studies showed a significant association between schizophrenia and a GAG trinucleotide repeat (TNR) polymorphism in the GSH key synthesizing enzyme glutamate-cysteine-ligase (GCL) catalytic subunit (GCLC) gene. The most common TNR genotype 7/7 was more frequent in controls, whereas the rarest TNR genotype 8/8 was three times more frequent in patients. The disease-associated genotypes correlated with a decrease in GCLC protein expression, GCL activity and GSH content. Such a redox dysregulation during development could underlie the structural and functional anomalies in connectivity: In experimental models, GSH deficit induced anomalies similar to those observed in patients. (a) morphology: In animal models with GSH deficit during the development we observed in prefrontal cortex a decreased dendritic spines density in pyramidal cells and an abnormal development of parvalbumine (but not of calretinine) immunoreactive GABA interneurones in anterior cingulate cortex. (b) physiology: GSH depletion in hippocampal slices induces NMDA receptors hypofunction and an impairment of long term potentiation. In addition, GSH deficit affected the modulation of dopamine on NMDA-induced Ca 2+ response in cultured cortical neurons. While dopamine enhanced NMDA responses in control neurons, it depressed NMDA responses in GSH-depleted neurons. Antagonist of D2-, but not D1-receptors, prevented this depression, a mechanism contributing to the efficacy of antipsychotics. The redox sensitive ryanodine receptors and L-type calcium channels underlie these observations. (c) cognition: Developing rats with low [GSH] and high dopamine lead deficit in olfactory integration and in object recognition which appears earlier in males that females, in analogy to the delay of the psychosis onset between man and woman. Conclusion: These clinical and experimental evidence, combined with the favorable outcome of a clinical trial with N-Acetyl Cysteine, a GSH precursor, on both the negative symptoms (Berk et al., submitted) and the mismatch negativity in an auditory oddball paradigm supported the proposal that a GSH synthesis impairment of genetic origin represent, among other factors, one major risk factor in schizophrenia.
Resumo:
The present study was designed to investigate the protective effect of glucose, oxygen and epinephrine resuscitation on impairment in the functional role of GABAergic, serotonergic, muscarinic receptors, PLC, BAX, SOD, CAT and GPx expression in the brain regions of hypoxia induced neonatal rats. Also, the role of hormones - Triiodothyronine (T3) and insulin, second messengers – cAMP, cGMP and IP3 and transcription factors – HIF and CREB in the regulation of neonatal hypoxia and its resuscitation methods were studied. Behavioural studies were conducted to evaluate the motor function and cognitive deficit in one month old control and experimental rats. The efficient and timely supplementation of glucose plays a crucial role in correcting the molecular changes due to hypoxia, oxygen and epinephrine. The sequence of glucose, epinephrine and oxygen administration at the molecular level is an important aspect of the study. The additive neuronal damage effect due to oxygen and epinephrine treatment is another important observation. The corrective measures by initial supply of glucose to hypoxic neonatal rats showed from the molecular study when brought to practice will lead to healthy intellectual capacity during the later developmental stages, which has immense clinical significance in neonatal care.
Resumo:
Parkinson's disease is a chronic progressive neurodegenerative movement disorder characterized by a profound and selective loss of nigrostriatal dopaminergic neurons. Our findings demonstrated that glutamatergic system is impaired during PD. The evaluations of these damages have important implications in understanding the molecular mechanism underlying motor, cognitive and memory deficits in PD. Our results showed a significant increase of glutamate content in the brain regions of 6- OHDA infused rat compared to control. This increased glutamate content caused an increase in glutamatergic and NMDA receptors function. Glutamate receptor subtypes- NMDAR1, NMDA2B and mGluR5 have differential regulatory role in different brain regions during PD. The second messenger studies confirmed that the changes in the receptor levels alter the IP3, cAMP and cGMP content. The alteration in the second messengers level increased the expression of pro-apoptotic factors - Bax and TNF-α, intercellular protein - α-synuclein and reduced the expression of transcription factor - CREB. These neurofunctional variations are the key contributors to motor and cognitive abnormalities associated with PD. Nestin and GFAP expression study confirmed that 5-HT and GABA induced the differentiation and proliferation of the BMC to neurons and glial cells in the SNpc of rats. We also observed that activated astrocytes are playing a crucial role in the proliferation of transplanted BMC which makes them significant for stem cell-based therapy. Our molecular and behavioural results showed that 5-HT and GABA along with BMC potentiates a restorative effect by reversing the alterations in glutamate receptor binding, gene expression and behaviour abnormality that occur during PD. The therapeutic significance in Parkinson’s disease is of prominence.
Resumo:
Nanoparticulate drug delivery systems provide wide opportunities for solving problems associated with drug stability or disease states and create great expectations in the area of drug delivery (Bosselmann & Williams, 2012). Nanotechnology, in a simple way, explains the technology that deals with one billionth of a meter scale (Ochekpe, et al., 2009). Fewer side effects, poor bioavailability, absorption at intestine, solubility, specific delivery to site of action with good pharmacological efficiency, slow release, degradation of drug and effective therapeutic outcome, are the major challenges faced by most of the drug delivery systems. To a great extent, biopolymer coated drug delivery systems coupled with nanotechnology alleviate the major drawbacks of the common delivery methods. Chitosan, deacetylated chitin, is a copolymer of β-(1, 4) linked glucosamine (deacetylated unit) and N- acetyl glucosamine (acetylated unit) (Radhakumary et al., 2005). Chitosan is biodegradable, non-toxic and bio compatible. Owing to the removal of acetyl moieties that are present in the amine functional groups of chitin, chitosan is readily soluble in aqueous acidic solution. The solubilisation occurs through the protonation of amino groups on the C-2 position of D-glucosamine residues whereby polysaccharide is converted into polycation in acidic media. Chitosan interacts with many active compounds due to the presence of amine group in it. The presence of this active amine group in chitosan was exploited for the interaction with the active molecules in the present study. Nanoparticles of chitosan coupled drugs are utilized for drug delivery in eye, brain, liver, cancer tissues, treatment of spinal cord injury and infections (Sharma et al., 2007; Li, et a., 2009; Paolicelli et al., 2009; Cho et al., 2010). To deliver drugs directly to the intended site of action and to improve pharmacological efficiency by minimizing undesired side effects elsewhere in the body and decrease the long-term use of many drugs, polymeric drug delivery systems can be used (Thatte et al., 2005).
Resumo:
Presynaptic GABAB receptors (GABABR) control glutamate and GABA release at many synapses in the nervous system. In the present study we used whole-cell patch-clamp recordings of spontaneous excitatory and inhibitory synaptic currents in the presence of TTX to monitor glutamate and GABA release from synapses in layer II and V of the rat entorhinal cortex (EC)in vitro. In both layers the release of both transmitters was reduced by application of GABABR agonists. Quantitatively, the depression of GABA release in layer II and layer V, and of glutamate release in layer V was similar, but glutamate release in layer II was depressed to a greater extent. The data suggest that the same GABABR may be present on both GABA and glutamate terminals in the EC, but that the heteroreceptor may show a greater level of expression in layer II. Studies with GABABR antagonists suggested that neither the auto- nor the heteroreceptor was consistently tonically activated by ambient GABA in the presence of TTX. Studies in EC slices from rats made chronically epileptic using a pilocarpine model of temporal lobe epilepsy revealed a reduced effectiveness of both auto- and heteroreceptor function in both layers. This could suggest that enhanced glutamate and GABA release in the EC may be associated with the development of the epileptic condition. Copyright © 2006 S. Karger AG.
Resumo:
Trabalho Final do Curso de Mestrado Integrado em Medicina, Faculdade de Medicina, Universidade de Lisboa, 2014