978 resultados para Functional forms


Relevância:

30.00% 30.00%

Publicador:

Resumo:

E-cadherin is involved in the formation of cell-junctions and the maintenance of epithelial integrity. Direct evidence of E-cadherin mutations triggering tumorigenesis has come from the finding of inactivating germline mutations of the gene (CDH1) in hereditary diffuse gastric cancer (HDGC). We screened a series of 66 young gastric cancer probands for germline CDH1 mutations, and two novel missense alterations together with an intronic variant were identified. We then analysed the functional significance of the exonic missense variants found here as well as a third germline missense variant that we previously identified in a HGDC family. cDNAs encoding either the wild-type protein or mutant forms of E-cadherin were stably transfected into CHO (Chinese hamster ovary) E-cadherin-negative cells. Transfected cell-lines were characterized in terms of aggregation, motility and invasion. We show that a proportion of apparently sporadic early-onset diffuse gastric carcinomas are associated with germline alterations of the E-cadherin gene. We also demonstrate that a proportion of missense variants are associated with significant functional consequences, suggesting that our cell model can be used as an adjunct in deciding on the potential pathogenic role of identified E-cadherin germline alterations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sandy shores are known to be extreme ecosystems where the vegetation has evolved many morphological and physiological adaptations for its survival. With the aim of identify possible relationships between the vegetation´s functional diversity with abiotic factors and its corresponding quantification, we collected data on the abundance and richness of the sandy coast vegetation complex in Grande, Anclitas and Caguamas keys. Its flora is largely characterized by the dominance of hemicryptophytes and chamaephytes plants with nanophyllous leaves and displaying dispersal syndromes such as zoochory and anemochory. However, the functional groups´ richness, in the present study, varies from one key to another. Functional diversity is similar between the wet and dry seasons, and its spatial variation is influenced by the interplay of the set of abiotic factors herein studied.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Kinesins are molecular motors that transport intracellular cargos along microtubules (MTs) and influence the organization and dynamics of the MT cytoskeleton. Their force-generating functions arise from conformational changes in their motor domain as ATP is bound and hydrolyzed, and products are released. In the budding yeast Saccharomyces cerevisiae, the Kar3 kinesin forms heterodimers with one of two non-catalytic kinesin-like proteins, Cik1 and Vik1, which lack the ability to bind ATP, and yet they retain the capacity to bind MTs. Cik1 and Vik1 also influence and respond to the MT-binding and nucleotide states of Kar3, and differentially regulate the functions of Kar3 during yeast mating and mitosis. The mechanism by which Kar3/Cik1 and Kar3/Vik1 dimers operate remains unknown, but has important implications for understanding mechanical coordination between subunits of motor complexes that traverse cytoskeletal tracks. In this study, we show that the opportunistic human fungal pathogen Candida albicans (Ca) harbors a single version of this unique form of heterodimeric kinesin and we present the first in vitro characterization of this motor. Like its budding yeast counterpart, the Vik1-like subunit binds directly to MTs and strengthens the MT-binding affinity of the heterodimer. However, in contrast to ScKar3/Cik1 and ScKar3/Vik1, CaKar3/Vik1 exhibits weaker overall MT-binding affinity and lower ATPase activity. Preliminary investigations using a multiple motor motility assay indicate CaKar3/Vik1 may not be motile. Using a maltose binding protein tagging system, we determined the X-ray crystal structure of the CaKar3 motor domain and observed notable differences in its nucleotide-binding pocket relative to ScKar3 that appear to represent a previously unobserved state of the active site. Together, these studies broaden our knowledge of novel kinesin motor assemblies and shed new light on structurally dynamic regions of Kar3/Vik1-like motor complexes that help mediate mechanical coordination of its subunits.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Kinesins are motor proteins that convert chemical energy from ATP hydrolysis into mechanical energy used to generate force along microtubules, transporting organelles, vesicles, and proteins within the cell. Kar3 kinesins are microtubule minus-end-directed motors with pleiotropic functions in mating and mitosis of budding and fission yeast. In Saccharomyces cerevisiae, Kar3 is multifunctionalized by two non-catalytic companion proteins, Vik1 and Cik1. A Kar3-like kinesin and a single Vik1/Cik1 ortholog are also expressed by the filamentous fungus Ashbya gossypii, which exhibits different nuclear movement challenges and unique microtubule dynamics from its yeast relatives. We hypothesized that these differences in A. gossypii physiology could translate into interesting and novel differences in its versions of Kar3 and Vik1/Cik1. Presented here is a structural and functional analysis of recombinantly expressed and purified forms of these motor proteins. Compared to the previously published S. cerevisiae Kar3 motor domain structure (ScKar3MD), AgKar3MD displays differences in the conformation of the ATPase pocket. Perhaps it is not surprising then that we observed the maximal microtubule-stimulated ATPase rate (kcat) of AgKar3MD to be approximately 3-fold slower than ScKar3MD, and that the affinity of AgKar3MD for microtubules (Kd,MT) was lower than ScKar3MD. This may suggest that elements that compose the ATPase pocket and that participate in conformational changes required for efficient ATP hydrolysis or products release work differently for AgKar3 and ScKar3. There are also subtle structural differences in the disposition of the secondary structural elements in the small lobe (B1a, B1b, and B1c) at the edge of the motor domain of AgKar3 that may reflect the enhanced microtubule-depolymerization activity that we observed for this motor, or they could relate to its interactions with a different regulatory companion protein than its budding yeast counterpart. Although we were unable to gain experimentally determined high-resolution information of AgVik1, the results of Phyre2-based bioinformatics analyses may provide a structural explanation for the limited microtubule-binding activity we observed. These and other fundamental differences in AgKar3/Vik1 could explain divergent functionalities from the ScKar3/Vik1 and ScKar3/Cik1 motor assemblies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Density functional calculations have been performed for ring isomers of sulfur with up to 18 atoms, and for chains with up to ten atoms. There are many isomers of both types, and the calculations predict the existence of new forms. Larger rings and chains are very flexible, with numerous local energy minima. Apart from a small, but consistent overestimate in the bond lengths, the results reproduce experimental structures where known. Calculations are also performed on the energy surfaces of S8 rings, on the interaction between a pair of such rings, and the reaction between one S8 ring and the triplet diradical S8 chain. The results for potential energies, vibrational frequencies, and reaction mechanisms in sulfur rings and chains provide essential ingredients for Monte Carlo simulations of the liquid–liquid phase transition. The results of these simulations will be presented in Part II.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Transcription factor E1AF is widely known to play critical roles in tumor metastasis via directly binding to the promoters of genes involved in tumor migration and invasion. Here, we report for the first time E1AF as a novel binding partner for ubiquitously expressed Sp1 transcription factor. E1AF forms a complex with Sp1, contributes to Sp1 phosphorylation and transcriptional activity, and functions as a mediator between epidermal growth factor and Sp1 phosphorylation and activity. Sp1 functions as a carrier bringing E1AF to the promoter region, thus activating transcription of glioma-related gene for beta1,4-galactosyltransferase V (GalT V; EC 2.4.1.38). Biologically, E1AF functions as a positive invasion regulator in glioma in cooperation with Sp1 partly via up-regulation of GalT V. This report describes a new mechanism of glioma invasion involving a cooperative effort between E1AF and Sp1 transcription factors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Venom has only been recently discovered to be a basal trait of the Anguimorpha lizards. Consequently, very little is known about the timings of toxin recruitment events, venom protein molecular evolution, or even the relative physical diversifications of the venom system itself. A multidisciplinary approach was used to examine the evolution across the full taxonomical range of this similar to 130 million-year-old clade. Analysis of cDNA libraries revealed complex venom transcriptomes. Most notably, three new cardioactive peptide toxin types were discovered (celestoxin, cholecystokinin, and YY peptides). The latter two represent additional examples of convergent use of genes in toxic arsenals, both having previously been documented as components of frog skin defensive chemical secretions. Two other novel venom gland-overexpressed modified versions of other protein frameworks were also recovered from the libraries (epididymal secretory protein and ribonuclease). Lectin, hyaluronidase, and veficolin toxin types were sequenced for the first time from lizard venoms and shown to be homologous to the snake venom forms. In contrast, phylogenetic analyses demonstrated that the lizard natriuretic peptide toxins were recruited independently of the form in snake venoms. The de novo evolution of helokinestatin peptide toxin encoding do-mains within the lizard venom natriuretic gene was revealed to be exclusive to the helodermatid/anguid subclade. New isoforms were sequenced for cysteine-rich secretory protein, kallikrein, and phospholipase A 2 toxins. Venom gland morphological analysis revealed extensive evolutionary tinkering. Anguid glands are characterized by thin capsules and mixed glands, serous at the bottom of the lobule and mucous toward the apex. Twice, independently this arrangement was segregated into specialized serous protein-secreting glands with thick capsules with the mucous lobules now distinct (Heloderma and the Lanthanotus/Varanus clade). The results obtained highlight the importance of utilizing evolution-based search strategies for biodiscovery and emphasize the largely untapped drug design and development potential of lizard venoms. Molecular & Cellular Proteomics 9:2369-2390, 2010.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The type VI secretion system (T6SS) contributes to the virulence of Burkholderia cenocepacia, an opportunistic pathogen causing serious chronic infections in patients with cystic fibrosis. BcsK(C) is a highly conserved protein among the T6SSs in Gram-negative bacteria. Here, we show that BcsK(C) is required for Hcp secretion and cytoskeletal redistribution in macrophages upon bacterial infection. These two phenotypes are associated with a functional T6SS in B. cenocepacia. Experiments employing a bacterial two-hybrid system and pulldown assays demonstrated that BcsK(C) interacts with BcsL(B), another conserved T6SS component. Internal deletions within BcsK(C) revealed that its N-terminal domain is necessary and sufficient for interaction with BcsL(B). Fractionation experiments showed that BcsK(C) can be in the cytosol or tightly associated with the outer membrane and that BcsK(C) and BcsL(B) form a high molecular weight complex anchored to the outer membrane that requires BcsF(H) (a ClpV homolog) to be assembled. Together, our data show that BcsK(C)/BcsL(B) interaction is essential for the T6SS activity in B. cenocepacia.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

WbaP is a membrane enzyme that initiates O antigen synthesis in Salmonella enterica by catalysing the transfer of galactose 1-phosphate (Gal-1-P) onto undecaprenyl phosphate (Und-P). WbaP possesses at least three predicted structural domains: an N-terminal region containing four transmembrane helices, a large central periplasmic loop, and a C-terminal domain containing the last transmembrane helix and a large cytoplasmic tail. In this work, we investigated the contribution of each region to WbaP function by constructing a series of mutant WbaP proteins and using them to complement O antigen synthesis in DeltawbaP mutants of S. enterica serovars Typhi and Typhimurium. Truncated forms of WbaP lacking the periplasmic loop exhibited altered chain-length distributions in O antigen polymerization, suggesting that this central domain is involved in modulating the chain-length distribution of the O polysaccharide. The N-terminal and periplasmic domains were dispensable for complementation of O antigen synthesis in vivo, suggesting that the C-terminal domain carries the sugar-phosphate transferase activity. However, despite the fact that they complemented the synthesis of O antigen in the DeltawbaP mutant in vivo, membrane extracts containing WbaP derivatives without the N-terminal domain failed to transfer radioactive Gal from UDP-Gal into a lipid-rich fraction. These results suggest that the N-terminal region of WbaP, which contains four transmembrane domains, is essential for the insertion or stability of the protein in the bacterial membrane. We propose that the domain structure of WbaP enables this protein not only to function in the transfer of Gal-1-P to Und-P but also to establish critical interactions with additional proteins required for the correct assembly of O antigen in S. enterica.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aerobactin gene cluster in pColV-K30 consists of five genes (iucABCD iutA); four of these (iucABCD) are involved in aerobactin biosynthesis, whereas the fifth one (iutA) encodes the ferriaerobactin outer membrane receptor. iucD encodes lysine:N6-hydroxylase, which catalyzes the first step in aerobactin biosynthesis. Regardless of the method used for cell rupture, we have consistently found that IucD remains membrane bound, and repeated efforts to achieve a purified and active soluble form of the enzyme have been unsuccessful. To circumvent this problem, we have constructed recombinant IucD proteins with modified amino termini by creating three in-frame gene fusions of IucD to the amino-terminal amino acids of the cytoplasmic enzyme beta-galactosidase. Two of these constructs resulted in the addition to the iucD coding region of a hydrophilic leader sequence of 13 and 30 amino acids. The other construct involved the deletion of the first 47 amino acids of the IucD amino terminus and the addition of 19 amino acids of the amino terminus of beta-galactosidase. Cells expressing any of the three recombinant IucD forms were found to produce soluble N6-hydroxylysine. One of these proteins, IucD439, was purified to homogeneity from the soluble fraction of the cell lysates, and it was capable of participating in the biosynthesis of aerobactin, as determined in vitro by a cell-free system and in vivo by a cross-feeding bioassay. A medium ionic strength of 0.25 (250 mM NaCl) or higher was required to maintain the protein in a catalytically functional, tetrameric state.(ABSTRACT TRUNCATED AT 250 WORDS)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have investigated the structural and electronic properties of p-coumaric acid, the chromophore of the photoactive yellow protein (PYP), by means of first-principles molecular dynamics based on density functional theory (DFT). We have studied the chromophore both in the vacuum and in an extended model which includes the nearest residues in the binding pocket of PYP, as derived from crystallographic data. We have characterized the ground state of the isolated chromophore in its protonated and deprotonated forms and computed the energy barrier involved in the trans to cis isomerization process around the carbon-carbon double bond. A comparison of the optimized structures of the chromophore in the vacuum and in the extended protein model, both in the trans (ground state of PYP in the dark) and cis (first light-activated intermediate) configuration, shows how the protein environment affects the chromophore in the first step of the photocycle. Our model gives an energy storage of 25 kcal/mol associated with the trans-to-cia photoisomerization. Finally, we have elucidated the nature of the electronic excitation relevant for the photochemistry of PYP by means of time-dependent DFT calculations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It has frequently been argued that multinational companies are moving towards network forms whereby subsidiaries share different practices with the rest of the company. This paper presents large-scale empirical evidence concerning the extent to which subsidiaries input novel practices into the rest of the multinational. We investigate this in the field of human resources through analysis of a unique international data set in four host countries - Canada, Ireland, Spain and the UK - and address the question of how we can explain variation between subsidiaries in terms of whether they initiate the diffusion of practices to other subsidiaries. The data support the argument that multiple, rather than single, factor explanations are required to more effectively understand the factors promoting or retarding the diffusion of human resource practices within multinational companies. It emerges that national, corporate and functional contexts all matter. More specifically, actors at subsidiary level who seek to initiate diffusion appear to be differentially placed according to their national context, their place within corporate structures and the extent to which the human resource function is internationally networked.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work is about the combination of functional ferroelectric oxides with Multiwall Carbon Nanotubes for microelectronic applications, as for example potential 3 Dimensional (3D) Non Volatile Ferroelectric Random Access Memories (NVFeRAM). Miniaturized electronics are ubiquitous now. The drive to downsize electronics has been spurred by needs of more performance into smaller packages at lower costs. But the trend of electronics miniaturization challenges board assembly materials, processes, and reliability. Semiconductor device and integrated circuit technology, coupled with its associated electronic packaging, forms the backbone of high-performance miniaturized electronic systems. However, as size decreases and functionalization increases in the modern electronics further size reduction is getting difficult; below a size limit the signal reliability and device performance deteriorate. Hence miniaturization of siliconbased electronics has limitations. On this background the Road Map for Semiconductor Industry (ITRS) suggests since 2011 alternative technologies, designated as More than Moore; being one of them based on carbon (carbon nanotubes (CNTs) and graphene) [1]. CNTs with their unique performance and three dimensionality at the nano-scale have been regarded as promising elements for miniaturized electronics [2]. CNTs are tubular in geometry and possess a unique set of properties, including ballistic electron transportation and a huge current caring capacity, which make them of great interest for future microelectronics [2]. Indeed CNTs might have a key role in the miniaturization of Non Volatile Ferroelectric Random Access Memories (NVFeRAM). Moving from a traditional two dimensional (2D) design (as is the case of thin films) to a 3D structure (based on a tridimensional arrangement of unidimensional structures) will result in the high reliability and sensing of the signals due to the large contribution from the bottom electrode. One way to achieve this 3D design is by using CNTs. Ferroelectrics (FE) are spontaneously polarized and can have high dielectric constants and interesting pyroelectric, piezoelectric, and electrooptic properties, being a key application of FE electronic memories. However, combining CNTs with FE functional oxides is challenging. It starts with materials compatibility, since crystallization temperature of FE and oxidation temperature of CNTs may overlap. In this case low temperature processing of FE is fundamental. Within this context in this work a systematic study on the fabrication of CNTs - FE structures using low cost low temperature methods was carried out. The FE under study are comprised of lead zirconate titanate (Pb1-xZrxTiO3, PZT), barium titanate (BaTiO3, BT) and bismuth ferrite (BiFeO3, BFO). The various aspects related to the fabrication, such as effect on thermal stability of MWCNTs, FE phase formation in presence of MWCNTs and interfaces between the CNTs/FE are addressed in this work. The ferroelectric response locally measured by Piezoresponse Force Microscopy (PFM) clearly evidenced that even at low processing temperatures FE on CNTs retain its ferroelectric nature. The work started by verifying the thermal decomposition behavior under different conditions of the multiwall CNTs (MWCNTs) used in this work. It was verified that purified MWCNTs are stable up to 420 ºC in air, as no weight loss occurs under non isothermal conditions, but morphology changes were observed for isothermal conditions at 400 ºC by Raman spectroscopy and Transmission Electron Microscopy (TEM). In oxygen-rich atmosphere MWCNTs started to oxidized at 200 ºC. However in argon-rich one and under a high heating rate MWCNTs remain stable up to 1300 ºC with a minimum sublimation. The activation energy for the decomposition of MWCNTs in air was calculated to lie between 80 and 108 kJ/mol. These results are relevant for the fabrication of MWCNTs – FE structures. Indeed we demonstrate that PZT can be deposited by sol gel at low temperatures on MWCNTs. And particularly interesting we prove that MWCNTs decrease the temperature and time for formation of PZT by ~100 ºC commensurate with a decrease in activation energy from 68±15 kJ/mol to 27±2 kJ/mol. As a consequence, monophasic PZT was obtained at 575 ºC for MWCNTs - PZT whereas for pure PZT traces of pyrochlore were still present at 650 ºC, where PZT phase formed due to homogeneous nucleation. The piezoelectric nature of MWCNTs - PZT synthesised at 500 ºC for 1 h was proved by PFM. In the continuation of this work we developed a low cost methodology of coating MWCNTs using a hybrid sol-gel / hydrothermal method. In this case the FE used as a proof of concept was BT. BT is a well-known lead free perovskite used in many microelectronic applications. However, synthesis by solid state reaction is typically performed around 1100 to 1300 ºC what jeopardizes the combination with MWCNTs. We also illustrate the ineffectiveness of conventional hydrothermal synthesis in this process due the formation of carbonates, namely BaCO3. The grown MWCNTs - BT structures are ferroelectric and exhibit an electromechanical response (15 pm/V). These results have broad implications since this strategy can also be extended to other compounds of materials with high crystallization temperatures. In addition the coverage of MWCNTs with FE can be optimized, in this case with non covalent functionalization of the tubes, namely with sodium dodecyl sulfate (SDS). MWCNTs were used as templates to grow, in this case single phase multiferroic BFO nanorods. This work shows that the use of nitric solvent results in severe damages of the MWCNTs layers that results in the early oxidation of the tubes during the annealing treatment. It was also observed that the use of nitric solvent results in the partial filling of MWCNTs with BFO due to the low surface tension (<119 mN/m) of the nitric solution. The opening of the caps and filling of the tubes occurs simultaneously during the refluxing step. Furthermore we verified that MWCNTs have a critical role in the fabrication of monophasic BFO; i.e. the oxidation of CNTs during the annealing process causes an oxygen deficient atmosphere that restrains the formation of Bi2O3 and monophasic BFO can be obtained. The morphology of the obtained BFO nano structures indicates that MWCNTs act as template to grow 1D structure of BFO. Magnetic measurements on these BFO nanostructures revealed a week ferromagnetic hysteresis loop with a coercive field of 956 Oe at 5 K. We also exploited the possible use of vertically-aligned multiwall carbon nanotubes (VA-MWCNTs) as bottom electrodes for microelectronics, for example for memory applications. As a proof of concept BiFeO3 (BFO) films were in-situ deposited on the surface of VA-MWCNTs by RF (Radio Frequency) magnetron sputtering. For in situ deposition temperature of 400 ºC and deposition time up to 2 h, BFO films cover the VA-MWCNTs and no damage occurs either in the film or MWCNTs. In spite of the macroscopic lossy polarization behaviour, the ferroelectric nature, domain structure and switching of these conformal BFO films was verified by PFM. A week ferromagnetic ordering loop was proved for BFO films on VA-MWCNTs having a coercive field of 700 Oe. Our systematic work is a significant step forward in the development of 3D memory cells; it clearly demonstrates that CNTs can be combined with FE oxides and can be used, for example, as the next 3D generation of FERAMs, not excluding however other different applications in microelectronics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dissertation presented to obtain the Ph.D degree in Molecular Biology

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The feline immunodeficiency virus (FIV) targets activated CD4-positive helper T cells preferentially, inducing an AIDS-like immunodeficiency in its natural host species, the domestic cat. The primary receptor for FIV is CD134, a member of the tumour necrosis factor receptor superfamily (TNFRSF) and all primary viral strains tested to date use CD134 for infection. To investigate the effect of the natural ligand for CD134 on FIV infection, feline CD134L was cloned and expressed in soluble forms. However, in contrast to murine or human CD134L, soluble feline CD134L (sCD134L) did not bind to CD134. Receptor-binding activity was restored by enforced covalent trimerisation following the introduction of a synthetic trimerisation domain from tenascin (TNC). Feline and human TNC-CD134Ls retained the species-specificity of the membrane-bound forms of the ligand while murine TNC-CD134L displayed promiscuous binding to feline, human or murine CD134. Feline and murine TNC-CD134Ls were antagonists of FIV infection; however, potency was both strain-specific and substrate-dependent, indicating that the modulatory effects of endogenous sCD134L, or exogenous CD134Lbased therapeutics, may vary depending on the viral strain.