994 resultados para Fluorescence spectrum
Resumo:
Up-conversion of 45PbF(2)-45GeO(2)-10WO(3) oxy-fluoride glasses co-doped with Yb3+ and Er3+ ions were prepared by fusion method through melting at 1223 K and then annealing at 653 K for 4 h. Transmittance of the undoped host glass was beyond 73% in a range of 0.6-2.5 mu m and the co-doped glasses still provided good transmittance beyond 50%. Refractive indices of the host and co-doped glasses were 1.517 and 1.650, respectively. Blue, green and red fluorescence spectra were observed in a range of 400-700 nm under 980 nm diode laser excitation. Up-conversion spectra at about 410, 518, 530and 650 nm were assigned to the 4f electron transitions of H-2(9/2) -> I-4(15)/(2), H-2(15/2) -> I-4(15/2) S-4(3/2) -> I-4(15/2) and F-4(9/2) -> I-4(15/2) of Er3+ ion, respectively. The mechanism of energy transfer between Yb3+ and Er3+ ions in the glass was analyzed. Raman shift shows the non-radiative relaxation of the glass sample is low.
Resumo:
In this paper, we report on a solid phase time-resolved fluorescence immunoassay chelate reagent-4,7-bis(chlorosulfophenyl)1, 10-phenanthroline-2,9-dicarboxylic acid (BCPDA), which is suitable as a fluorescent labeling agent. The five step synthesis product of BCPDA was presented for improving the purity of the product based on the three step synthesis product. The approach involves chlorization, hydrolyzing the ester, preparing disodium, carboxylate to diacid, sulfonation. The yield of five step product is 99 %, 45 %, 94 %, 95 %, 80 % respectively. The structure and purity of product was characterized by the melting point, IR,H-1 NMR, UV spectrum, element analysis, and proved to be consistent with the structure predictal.
Resumo:
After meso-tetra (alpha, alpha, alpha, alpha-O-phenylacetyl benzene)porphyrin combined with McAb 1F2, there was a significant hyperchromic effect, indicating that the combination of porphyrin and antibody is rigid and compact, aromatic amino acids exist at the combining sites of antigen in antibody. These aromatic amino acids are Trys and Trps, but the numbers of Trp are more than that found for Trys. The stochiometric ratio of porphyrin to 1F2 is 1:1, the disassociation constant was determined as(2.084+/-0.216) x 10(-10) mol/L by a method of fluorescence quenching, showing that both have a high affinity.
Resumo:
The synchronous fluorescence spectra of myoglobin were studies for the first time. The fluorescence peals observed in the spectra were assigned, When the wavelength interval (Delta lambda) is 80 nm, the main peak at 335 nm is originated from the tryptophan residues in the myoglobin molecule. When Delta lambda is 20 nn, the peak at 308 nm is mainly due to the tyrosine residues in the myoglobin molecule and in a small part due to the tryptophan residues. Two peaks at 322 and 596 nm were observed in the spectrum of myoglobin for Delta lambda = 40 nm. The peak at 322 nm is due to both tyrosine and tryptophan residues. The peak at 596 nm is attributed to the heme group in the myoglobin molecule.
Resumo:
Filtration and cross-flow ultrafiltration techniques were used to separate culture media of Prorocentrum donghaiense at the exponential growth, stationary and decline stages into < 0.45 mu m filtrate, 100 kDa-0.45 mu m, 10-100 kDa and 1-10 kDa retentate and < 1 kDa ultrafiltrate fractions. The fluorescence. properties of different molecular weights of dissolved organic matter (DOM) were measured by excitation-emission matrix spectra. Protein-like and humic-like fluorophores were observed in the DOM produced by P. donghaiense. The central positions of protein-like fluorophores showed a red shift with prolonged growth duration, shifting from tyrosine-like properties at the exponential growth stage to tryptophan-like properties at the stationary and decline stages. The excitation wavelengths of protein-like fluorophores exhibited some change in the exponential growth and stationary stages with increased molecular size, but showed little change in the decline stage. However, the emission wavelengths in the decline stage exhibited a blue shift. Very distinct C type and A type peaks in humic-like fluorophores were observed. With a prolonged culture time, the intensities of both of the peaks became strong and the excitation wavelengths of peak A showed a red shift, while the A:C ratios fell. More than 94% of fluorescent DOM was in the lower than 1 kDa molecular weight fraction.
Resumo:
This article presents our most recent advances in synchronous fluorescence (SF) methodology for biomedical diagnostics. The SF method is characterized by simultaneously scanning both the excitation and emission wavelengths while keeping a constant wavelength interval between them. Compared to conventional fluorescence spectroscopy, the SF method simplifies the emission spectrum while enabling greater selectivity, and has been successfully used to detect subtle differences in the fluorescence emission signatures of biochemical species in cells and tissues. The SF method can be used in imaging to analyze dysplastic cells in vitro and tissue in vivo. Based on the SF method, here we demonstrate the feasibility of a time-resolved synchronous fluorescence (TRSF) method, which incorporates the intrinsic fluorescent decay characteristics of the fluorophores. Our prototype TRSF system has clearly shown its advantage in spectro-temporal separation of the fluorophores that were otherwise difficult to spectrally separate in SF spectroscopy. We envision that our previously-tested SF imaging and the newly-developed TRSF methods will combine their proven diagnostic potentials in cancer diagnosis to further improve the efficacy of SF-based biomedical diagnostics.
Resumo:
A fluorescence excitation spectrum of formic acid monomer (HCOOH) , has been recorded in the 278-246 nm region and has been attributed to an n >7r* electron promotion in the anti conformer. The S^< S^ electronic origins of the HCOOH/HCOOD/DCOOH/DCOOD isotopomers were assigned to weak bands observed at 37431.5/37461.5/37445.5/37479.3 cm'''. From a band contour analysis of the 0°^ band of HCOOH, the rotational constants for the excited state were estimated: A'=1.8619, B'=0.4073, and C'=0.3730 cm'\ Four vibrational modes, 1/3(0=0), j/^(0-C=0) , J/g(C-H^^^) and i/,(0-H^yJ were observed in the spectrum. The activity of the antisymmetric aldehyde wagging and hydroxyl torsional modes in forming progressions is central to the analysis, leading to the conclusion that the two hydrogens are distorted from the molecular plane, 0-C=0, in the upper S. state. Ab initio calculations were performed at the 6-3 IG* SCF level using the Gaussian 86 system of programs to aid in the vibrational assignments. The computations show that the potential surface which describes the low frequency OH torsion (twisting motion) and the CH wagging (molecular inversion) motions is complex in the S^ excited electronic state. The OH and CH bonds were calculated to be twisted with respect to the 0-C=0 molecular frame by 63.66 and 4 5.76 degrees, respectively. The calculations predicted the existence of the second (syn) rotamer which is 338 cm'^ above the equilibrium configuration with OH and CH angles displaced from the plane by 47.91 and 41.32 degrees.
Resumo:
In this paper, the fluorescence behaviour of nano colloids of ZnO has been studied as a function of the excitation wavelength. We have found that excitation at the tail of the absorption band gives rise to an emission that shifts with the change of the excitation wavelength. The excitation wavelength dependent shift of the fluorescence maximum is measured to be between 60 and 100 nm. This kind of excitation wavelength dependent fluorescence behaviour, which may appear to be in violation of Kasha’s rule of excitation wavelength independence of the emission spectrum, has been observed for nano ZnO colloids prepared by two different chemical routes and different capping agents. It is shown that the existence of a distribution of energetically different molecules in the ground state coupled with a low rate of the excited state relaxation processes, namely, solvation and energy transfer, are responsible for the excitation wavelength dependent fluorescence behaviour of the systems.
Resumo:
In this paper, the fluorescence behaviour of nano colloids of ZnO has been studied as a function of the excitation wavelength. We have found that excitation at the tail of the absorption band gives rise to an emission that shifts with the change of the excitation wavelength. The excitation wavelength dependent shift of the fluorescence maximum is measured to be between 60 and 100 nm. This kind of excitation wavelength dependent fluorescence behaviour, which may appear to be in violation of Kasha’s rule of excitation wavelength independence of the emission spectrum, has been observed for nano ZnO colloids prepared by two different chemical routes and different capping agents. It is shown that the existence of a distribution of energetically different molecules in the ground state coupled with a low rate of the excited state relaxation processes, namely, solvation and energy transfer, are responsible for the excitation wavelength dependent fluorescence behaviour of the systems.
Resumo:
Fluorescence of BaS: Sm phosphor has been studied using a pulsed Nitrogen laser (337.1 nm) as the excitation source. The spectrum consists of a broad band in the region 540–660nm superposed by the characteristic Sm3+ lines. Energy level splitting pattern of Sm3+ due to crystal field effects has been calculated and relevent field parameters are evaluated. Analysis shows that Sm3+ takes up Ba2+ substitutional sites.
Resumo:
Vibrational overtone spectroscopy of molecules containing X-H oscillators (X = C, N, O...) has become an effective tool for the study of molecular structure, dynamics, inter and intramolecular interactions, conformational aspects and substituent effects in aliphatic and aromatic compounds. In the present work, the author studied the NIR overtone spectra of some liquid phase organic compounds. The analysis of the CH, NH and OH overtones yielded important structural information about these systems. In an attempt to get information on electronic energy levels, we studied the pulsed Nd:YAG laser induced fluorescence spectra of certain organic compounds. The pulsed laser Raman spectra of some organic compounds are also studied. The novel high resolution technique of near infrared tunable diode laser absorption spectroscopy (TDLAS) is used to record the rotational structure of the second OH overtone spectrum of 2-propanol. The spectral features corresponding to the different molecular conformations could be identified from the high resolution spectrum. The whole work described in this thesis is divided into five chapters.
Resumo:
Children with autistic spectrum disorders (ASDs) tend to suffer from severe gastrointestinal problems. Such symptoms may be due to a disruption of the indigenous gut flora promoting the overgrowth of potentially pathogenic micro-organisms. The faecal flora of patients with ASDs was studied and compared with those of two control groups (healthy siblings and unrelated healthy children). Faecal bacterial populations were assessed through the use of a culture-independent technique, fluorescence in situ hybridization, using oligonucleotide probes targeting predominant components of the gut flora. The faecal flora of ASD patients contained a higher incidence of the Clostridium histolyticum group (Clostridium clusters I and 11) of bacteria than that of healthy children. However, the non-autistic sibling group had an intermediate level of the C. histolyticum group, which was not significantly different from either of the other subject groups. Members of the C. histolyticum group are recognized toxin-producers and may contribute towards gut dysfunction, with their metabolic products also exerting systemic effects. Strategies to reduce clostridial population levels harboured by ASD patients or to improve their gut microflora profile through dietary modulation may help to alleviate gut disorders common in such patients.
Resumo:
This work demonstrates that the detuning of the fs-laser spectrum from the two-photon absorption band of organic materials can be used to reach further control of the two-photon absorption by pulse spectral phase manipulation. We investigate the coherent control of the two-photon absorption in imidazole-thiophene core compounds presenting distinct two-photon absorption spectra. The coherent control, performed using pulse phase shaping and genetic algorithm, exhibited different growth rates for each sample. Such distinct trends were explained by calculating the two-photon absorption probability considering the intrapulse interference mechanism, taking into account the two-photon absorption spectrum of the samples. Our results indicate that tuning the relative position between the nonlinear absorption and the pulse spectrum can be used as a novel strategy to optimize the two-photon absorption in broadband molecular systems. (C) 2011 Elsevier B.V. All rights reserved.
Measurement of the energy spectrum of cosmic rays above 10(18) eV using the Pierre Auger Observatory
Resumo:
We report a measurement of the flux of cosmic rays with unprecedented precision and Statistics using the Pierre Auger Observatory Based on fluorescence observations in coincidence with at least one Surface detector we derive a spectrum for energies above 10(18) eV We also update the previously published energy spectrum obtained with the surface detector array The two spectra are combined addressing the systematic uncertainties and, in particular. the influence of the energy resolution on the spectral shape The spectrum can be described by a broken power law E(-gamma) with index gamma = 3 3 below the ankle which is measured at log(10)(E(ankle)/eV) = 18 6 Above the ankle the spectrum is described by a power law with index 2 6 followed by a flux suppression, above about log(10)(E/eV) = 19 5, detected with high statistical significance (C) 2010 Elsevier B V All rights reserved
Phase behavior of synthetic amphiphile vesicles investigated by calorimetry and fluorescence methods
Resumo:
The understanding of biological membranes may be improved by investigating physical properties of vesicles from natural or synthetic amphiphiles. The application of vesicles as mimetic agents depends on the knowledgment of their structure and properties. Vesicles having different curvature and size may be obtained using different preparation protocols. We have used differential scanning calorimetry (DSC) and steady-state fluorescence to investigate the gel to liquid-crystal phase transition of vesicles prepared by sonication (SUV) and non-sonication (GUV) of the synthetic dioctadecyldimethylammonium bromide (DODAB) in aqueous solution. DSC thermograms for a non-sonicated dispersion show a well-defined pre- and main transition corresponding to two narrow peaks at 36 and 45°C in the first upscan, while in a second upscan, only the main peak was observed. The sharpness of the peaks indicate a cooperative phase behavior for GUV. For a sonicated DODAB dispersion, the first upscan shows a third peak at 40.3°C, whereas for the second upscan the peaks are not well-defined, indicating a less cooperative phase behavior. Alternatively, the fluorescence quantum yield (Φ f) and the anisotropy (r) of trans, trans, trans-1-[4-(3-carboxypropyl)-phenyl]-6-[4-butylphenyl]-1,3,5-hexatriene (4H4A) and the ratio I 1/I 3 of the first to the third vibronic peaks of the pyrene emission spectrum as function of temperature are used as well to describe the phase behavior of DODAB sonicated and non-sonicated dispersions. It is in good agreement with the DSC results that the cooperativity of the thermotropic process is diminished under sonication of the DODAB dispersion, meaning that sonication changes from homogeneous to heterogeneous populations of the amphiphile aggregates. The pre- and main transitions obtained from these techniques are in fairly good accord with results from the literature.