933 resultados para Flotation. Photo-fenton. Surfactant. Produced water. Effluent


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Le acque di vegetazione (AV) costituiscono un serio problema di carattere ambientale, sia a causa della loro elevata produzione sia per l’ elevato contenuto di COD che oscilla fra 50 e 150 g/l. Le AV sono considerate un refluo a tasso inquinante fra i più elevati nell’ambito dell’industria agroalimentare e la loro tossicità è determinata in massima parte dalla componente fenolica. Il presente lavoro si propone di studiare e ottimizzare un processo non solo di smaltimento di tale refluo ma anche di una sua valorizzazione, utlizzandolo come materia prima per la produzione di acidi grassi e quindi di PHA, polimeri biodegradabili utilizzabili in varie applicazioni. A tale scopo sono stati utilizzati due bioreattori anaerobici a biomassa adesa, di identica configurazione, con cui si sono condotti due esperimenti in continuo a diverse temperature e carichi organici al fine di studiare l’influenza di tali parametri sul processo. Il primo esperimento è stato condotto a 35°C e carico organico pari a 12,39 g/Ld, il secondo a 25°C e carico organico pari a 8,40 g/Ld. Si è scelto di allestire e mettere in opera un processo a cellule immobilizzate in quanto questa tecnologia si è rivelata vantaggiosa nel trattamento continuo di reflui ad alto contenuto di COD e carichi variabili. Inoltre si è scelto di lavorare in continuo poiché tale condizione, per debiti tempi di ritenzione idraulica, consente di minimizzare la metanogenesi, mediata da microrganismi con basse velocità specifiche di crescita. Per costituire il letto fisso dei due reattori si sono utilizzati due diversi tipi di supporto, in modo da poter studiare anche l’influenza di tale parametro, in particolare si è fatto uso di carbone attivo granulare (GAC) e filtri ceramici Vukopor S10 (VS). Confrontando i risultati si è visto che la massima quantità di VFA prodotta nell’ambito del presente studio si ha nel VS mantenuto a 25°C: in tale condizione si arriva infatti ad un valore di VFA prodotti pari a 524,668 mgCOD/L. Inoltre l’effluente in uscita risulta più concentrato in termini di VFA rispetto a quello in entrata: nell’alimentazione la percentuale di materiale organico presente sottoforma di acidi grassi volatili era del 54 % e tale percentuale, in uscita dai reattori, ha raggiunto il 59 %. Il VS25 rappresenta anche la condizione in cui il COD degradato si è trasformato in percentuale minore a metano (2,35 %) e questo a prova del fatto che l’acidogenesi ha prevalso sulla metanogenesi. Anche nella condizione più favorevole alla produzione di VFA però, si è riusciti ad ottenere una loro concentrazione in uscita (3,43 g/L) inferiore rispetto a quella di tentativo (8,5 g/L di VFA) per il processo di produzione di PHA, sviluppato da un gruppo di ricerca dell’università “La Sapienza” di Roma, relativa ad un medium sintetico. Si può constatare che la modesta produzione di VFA non è dovuta all’eccessiva degradazione del COD, essendo questa nel VS25 appena pari al 6,23%, ma piuttosto è dovuta a una scarsa concentrazione di VFA in uscita. Questo è di buon auspicio nell’ottica di ottimizzare il processo migliorandone le prestazioni, poiché è possibile aumentare tale concentrazione aumentando la conversione di COD in VFA che nel VS25 è pari a solo 5,87%. Per aumentare tale valore si può agire su vari parametri, quali la temperatura e il carico organico. Si è visto che il processo di acidogenesi è favorito, per il VS, per basse temperature e alti carichi organici. Per quanto riguarda il reattore impaccato con carbone attivo la produzione di VFA è molto ridotta per tutti i valori di temperatura e carichi organici utilizzati. Si può quindi pensare a un’applicazione diversa di tale tipo di reattore, ad esempio per la produzione di metano e quindi di energia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Processos de fotodegradação de compostos orgânicos tóxicos têm sido bastante estudados. Este trabalho trata da aplicação do processo foto-Fenton para a degradação de atrazina em água (composto modelo). O efeito das concentrações dos seguintes compostos foi avaliado: peróxido de hidrogênio (2 a 6 mmol L-1) e ferrioxalato de potássio (0,2 a 1 mmol L-1). Os experimentos foram realizados em um reator com lâmpada UV - 8W (254nm). O processo de fotodegradação foi monitorado por medidas de espectrofotometria de absorção molecular automatizada por injeção seqüencial (SIA) para determinação de peróxido de hidrogênio e por cromatografia a líquido de alta eficiência (CLAE) para determinação de atrazina e metabólitos. Os experimentos demonstram que o processo de foto-Fenton é viável para o tratamento de atrazina em água.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Miscanthus × giganteus was subjected to pre-treatment with deionised water, hydrochloric acid or Triton X-100 surfactant, and subsequently fast pyrolysed in a fluidised bed reactor at 535 °C to obtain bio-oil. Triton X-100 surfactant was identified as a promising pre-treatment medium for removal of inorganic matter because its physicochemical nature was expected to mobilise inorganic matter in the biomass matrix. The influence of different concentrations of Triton X-100 pre-treatment solutions on the quality of bio-oil produced from fast pyrolysis was studied, as defined by a single phase bio-oil, viscosity index and water content index. The highest concentration of Triton X-100 surfactant produced the best quality bio-oil with high organic yield and low reaction water content. The calculated viscosity index from the accelerated ageing test showed that bio-oil stability improved as the concentration of Triton X-100 increased. © 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The principal effluent in the oil industry is the produced water, which is commonly associated to the produced oil. It presents a pronounced volume of production and it can be reflected on the environment and society, if its discharge is unappropriated. Therefore, it is indispensable a valuable careful to establish and maintain its management. The traditional treatment of produced water, usualy includes both tecniques, flocculation and flotation. At flocculation processes, there are traditional floculant agents that aren’t well specified by tecnichal information tables and still expensive. As for the flotation process, it’s the step in which is possible to separate the suspended particles in the effluent. The dissolved air flotation (DAF) is a technique that has been consolidating economically and environmentally, presenting great reliability when compared with other processes. The DAF is presented as a process widely used in various fields of water and wastewater treatment around the globe. In this regard, this study was aimed to evaluate the potential of an alternative natural flocculant agent based on Moringa oleifera to reduce the amount of oil and grease (TOG) in produced water from the oil industry by the method of flocculation/DAF. the natural flocculant agent was evaluated by its efficacy, as well as its efficiency when compared with two commercial flocculant agents normally used by the petroleum industry. The experiments were conducted following an experimental design and the overall efficiencies for all flocculants were treated through statistical calculation based on the use of STATISTICA software version 10.0. Therefore, contour surfaces were obtained from the experimental design and were interpreted in terms of the response variable removal efficiency TOG (total oil and greases). The plan still allowed to obtain mathematical models for calculating the response variable in the studied conditions. Commercial flocculants showed similar behavior, with an average overall efficiency of 90% for oil removal, however it is the economical analysis the decisive factor to choose one of these flocculant agents to the process. The natural alternative flocculant agent based on Moringa oleifera showed lower separation efficiency than those of commercials one (average 70%), on the other hand this flocculant causes less environmental impacts and it´s less expensive

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Advanced Oxidation Processes (AOP) are techniques involving the formation of hydroxyl radical (HO•) with high organic matter oxidation rate. These processes application in industry have been increasing due to their capacity of degrading recalcitrant substances that cannot be completely removed by traditional processes of effluent treatment. In the present work, phenol degrading by photo-Fenton process based on addition of H2O2, Fe2+ and luminous radiation was studied. An experimental design was developed to analyze the effect of phenol, H2O2 and Fe2+ concentration on the fraction of total organic carbon (TOC) degraded. The experiments were performed in a batch photochemical parabolic reactor with 1.5 L of capacity. Samples of the reactional medium were collected at different reaction times and analyzed in a TOC measurement instrument from Shimadzu (TOC-VWP). The results showed a negative effect of phenol concentration and a positive effect of the two other variables in the TOC degraded fraction. A statistical analysis of the experimental design showed that the hydrogen peroxide concentration was the most influent variable in the TOC degraded fraction at 45 minutes and generated a model with R² = 0.82, which predicted the experimental data with low precision. The Visual Basic for Application (VBA) tool was used to generate a neural networks model and a photochemical database. The aforementioned model presented R² = 0.96 and precisely predicted the response data used for testing. The results found indicate the possible application of the developed tool for industry, mainly for its simplicity, low cost and easy access to the program.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Advanced Oxidation Processes (AOP) are techniques involving the formation of hydroxyl radical (HO•) with high organic matter oxidation rate. These processes application in industry have been increasing due to their capacity of degrading recalcitrant substances that cannot be completely removed by traditional processes of effluent treatment. In the present work, phenol degrading by photo-Fenton process based on addition of H2O2, Fe2+ and luminous radiation was studied. An experimental design was developed to analyze the effect of phenol, H2O2 and Fe2+ concentration on the fraction of total organic carbon (TOC) degraded. The experiments were performed in a batch photochemical parabolic reactor with 1.5 L of capacity. Samples of the reactional medium were collected at different reaction times and analyzed in a TOC measurement instrument from Shimadzu (TOC-VWP). The results showed a negative effect of phenol concentration and a positive effect of the two other variables in the TOC degraded fraction. A statistical analysis of the experimental design showed that the hydrogen peroxide concentration was the most influent variable in the TOC degraded fraction at 45 minutes and generated a model with R² = 0.82, which predicted the experimental data with low precision. The Visual Basic for Application (VBA) tool was used to generate a neural networks model and a photochemical database. The aforementioned model presented R² = 0.96 and precisely predicted the response data used for testing. The results found indicate the possible application of the developed tool for industry, mainly for its simplicity, low cost and easy access to the program.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work describes a photo-reactor to perform in line degradation of organic compounds by photo-Fenton reaction using Sequential Injection Analysis (SIA) system. A copper phthalocyanine-3,4',4²,4²¢-tetrasulfonic acid tetrasodium salt dye solution was used as a model compound for the phthalocyanine family, whose pigments have a large use in automotive coatings industry. Based on preliminary tests, 97% of color removal was obtained from a solution containing 20 µmol L-1 of this dye.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Oxidation processes can be used to treat industrial wastewater containing non-biodegradable organic compounds. However, the presence of dissolved salts may inhibit or retard the treatment process. In this study, wastewater desalination by electrodialysis (ED) associated with an advanced oxidation process (photo-Fenton) was applied to an aqueous NaCl solution containing phenol. The influence of process variables on the demineralization factor was investigated for ED in pilot scale and a correlation was obtained between the phenol, salt and water fluxes with the driving force. The oxidation process was investigated in a laboratory batch reactor and a model based on artificial neural networks was developed by fitting the experimental data describing the reaction rate as a function of the input variables. With the experimental parameters of both processes, a dynamic model was developed for ED and a continuous model, using a plug flow reactor approach, for the oxidation process. Finally, the hybrid model simulation could validate different scenarios of the integrated system and can be used for process optimization.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A Pilot-Scale Engineered Ecosystem (PSEE) operated for over two years in sub-tropical conditions, produced an effluent with COD (median 38 mg/L) and TSS (median 3 mg/L) levels comparable to that required by the AS/NZS 1547:2000 Onsite Domestic Wastewater Management standard. Only partial nitrification was achieved as dissimilatory nitrate reduction to ammonia occurred; however the level of NH4-N was reduced by 75% and total inorganic nitrogen by 53%. Phosphorus was not removed by the system due to the lack of regular sludge removal. Mass balances around the system showed that bacteria removed 36% of the influent nitrogen and 76% of the influent COD. Algae and plants were shown to remove 5% of the influent nitrogen, and 6% of the influent phosphorus. Challenges in developing a sustainable on-site wastewater treatment system were largely met by minimising chemical, energy and labour inputs, eliminating the need for frequent sludge handling, and creating an effluent quality suitable for re-use in non-potable applications. However, the sludge removal from the system needs to be adequately managed to avoid excessive accumulation as this can cause a range of negative impacts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

New emerging contaminants could represent a danger to the environment and Humanity with repercussions not yet known. One of the major worldwide pharmaceutical and personal care productions are antimicrobials products, triclosan, is an antimicrobial agent present in most products. Despite the high removal rate of triclosan present in wastewater treatments, triclosan levels are on the rise in the environment through disposal of wastewater effluent and use of sewage sludge in land application. Regulated in the EC/1272/2008 (annex VI, table 3.1), this compound is considered very toxic to aquatic life and it has been reported that photochemical transformation of triclosan produces dioxins. In the current work it was defined three objectives; determination of the most efficient process in triclosan degradation, recurring to photochemical degradation methods comparing different sources of light; identification of the main by-products formed during the degradation and the study of the influence of the Fenton and photo-Fenton reaction. Photochemical degradation methods such as: photocatalysis under florescent light (UV), photocatalysis under visible light (sunlight), photocatalysis under LEDs, photo-Fenton and Fenton reaction have been compared in this work. The degradation of triclosan was visualized through gas chromatography/mass spectrometry (GC/MS). In this study photo-Fenton reaction has successfully oxidized triclosan to H2O and CO2 without any by-products within 2 hours. Photocatalysis by titanium dioxide (TiO2) under LEDs was possible, having a degradation rate of 53% in an 8 hours essay. The degradation rate of the Fenton reaction, UV light and sunlight showed degradation between 90% and 95%. The results are reported to the data observed without statistic support, since this was not possible during the work period. Hydroquinone specie and 2,4-dichlorophenol by-products were identified in the first hour of photocatalysis by UV. A common compound, possibly identified has C7O4H , was present at the degradation by UV, sunlight and LEDs and was concluded to be a contaminant. In the future more studies in the use of LEDs should be undertaken given the advantages of long durability and low consumption of energy of these lamps and that due to their negative impact on the environment fluorescent lamps are being progressively made unavailable by governments, requiring new solutions to be found. Fenton and photo-Fenton reactions can also be costly processes given the expensive reagents used.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: To evaluate the effects of 2 different doses of exogenous surfactant on pulmonary mechanics and on the regularity of pulmonary parenchyma inflation in newborn rabbits. METHOD: Newborn rabbits were submitted to tracheostomy and randomized into 4 study groups: the Control group did not receive any material inside the trachea; the MEC group was instilled with meconium, without surfactant treatment; the S100 and S200 groups were instilled with meconium and were treated with 100 and 200 mg/kg of exogenous surfactant (produced by Instituto Butantan) respectively. Animals from the 4 groups were mechanically ventilated during a 25-minute period. Dynamic compliance, ventilatory pressure, tidal volume, and maximum lung volume (P-V curve) were evaluated. Histological analysis was conducted using the mean linear intercept (Lm), and the lung tissue distortion index (SDI) was derived from the standard deviation of the means of the Lm. One-way analysis of variance was used with a = 0.05. RESULTS: After 25 minutes of ventilation, dynamic compliance (mL/cm H2O · kg) was 0.87 ± 0.07 (Control); 0.49 ± 0.04 (MEC*); 0.67 ± 0.06 (S100); and 0.67 ± 0.08 (S200), and ventilatory pressure (cm H2O) was 9.0 ± 0.9 (Control); 16.5 ± 1.7 (MEC*); 12.4 ± 1.1 (S100); and 12.1 ± 1.5 (S200). Both treated groups had lower Lm values and more homogeneity in the lung parenchyma compared to the MEC group: SDI = 7.5 ± 1.9 (Control); 11.3 ± 2.5 (MEC*), 5.8 ± 1.9 (S100); and 6.7 ± 1.7 (S200) (*P < 0.05 versus all the other groups). CONCLUSIONS: Animals treated with surfactant showed significant improvement in pulmonary mechanics and more regularity of the lung parenchyma in comparison to untreated animals. There was no difference in results after treatment with either of the doses used.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Estudi elaborat a partir d’una estada a la Plataforma Solar de Almería entre desembre del 2006 i gener del 2007. S’ha dut a terme la degradació en planta pilot dels colorants reactius Procion Red H-E7B i Cibacron Red FN-R mitjançant el procés de foto-Fenton aplicat com a tractament únic i com a pretractament d’un procés biològic. El procés de foto-Fenton, assistit amb llum solar, es va realitzar en un fotoreactor solar tipus Col•lector Parabòlic Compost (CPC) i el tractament biològic en un Reactor de Biomassa Immobilitzada (RBI). Com a punt de partida, i amb l’objectiu d’estudiar la reproductibilitat del sistema, es van prendre resultats obtinguts d’experiments realitzats prèviament a escala de laboratori i amb llum artificial. El paràmetre Carboni Orgànic Total (COT) es va emprar com a indicador de l’eliminació dels colorants i dels seus intermedis. En aplicar únicament el procés de foto-Fenton com a tractament, concentracions de 10 mg•l-1 de Fe (II) i 250 mg•l-1 de H2O2 per degradar 250 mg•l-1 Procion Red H-E7B, i de 20 mg•l-1 de Fe (II) i 500 mg•l-1 de H2O2 per degradar 250 mg•l-1 Cibacron Red FN-R, van reproduir els resultants obtinguts al laboratori, amb uns nivells d’eliminació de COT del 82 i 86%, respectivament. A més, l’ús beneficiós de la llum solar en el procés de foto-Fenton, juntament amb la configuració del CPC, van incrementar la velocitat de degradació respecte als resultats previs, permetent la reducció de la concentració de Fe (II) de 10 a 2 mg•l-1 (Procion Red H-E7B) i de 20 a 5 mg•l-1 (Cibacron Red FN-R) sense pèrdues d’efectivitat. D’altre banda, el sistema combinat foto-Fenton/tractament biològic en planta pilot, unes concentracions d’oxidant de 225 mg•l-1 H2O2 per Cibacron Red FN-R i 65 mg•l-1 H2O2 per Procion Red H-E7B van ser suficients per generar solucions intermèdies biodegradables i alimentar així el RBI, millorant inclús els resultats obtinguts prèviament al laboratori.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A flow injection spectrophotometric system was projected for monitoring hydrogen peroxide during photodegradation of organic contaminants in photo-Fenton processes (Fe2+/H2O2/UV). Sample is injected manually in a carrier stream and then receives by confluence a 0.1 mol L-1 NH4VO3 solution in 0.5 mol L-1 H2SO4 medium. The product formed shows absorption at 446 nm which is recorded as a peak with height proportional to H2O2 concentration. The performance of the proposed system was evaluated by monitoring the consumption of H2O2 during the photodegradation of dichloroacetic acid solution by foto-Fenton reaction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Experimental procedures based on factorial design and surface response methodology were applied to establishe experimental conditions for the decomposition of a 1:400 (v/v) Supocade® (chlorfenvinphos 13.8% and cypermethrin 2.6%) solution, used to control cattle ticks. Experiments exploring photo-oxidative reactions were performed with and without UV radiation, fixing exposition time and pesticide volume, and varying the oxidant mixture. The use of 3.6 mmol L-1 Fe2+ plus 1.9 mol L-1 H2O2 plus UV radiation provided destruction of 94% of the original carbon content and reduction of aromatic, aliphatic and carbinolic compounds, evaluated by determination of residual carbon content by ICP OES and NMR analysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work Fenton and photo-Fenton processes for textile dye degradation were investigated using iron (II) immobilized in alginate spheres. Photomicrographs obtained by scanning electron microscopy showed an irregular and porous surface with a homogeneous distribution of iron. The Fenton process was used to evaluate the degradation efficiency of reactive dyes and this procedure showed a low degradation effect. The association of artificial visible light or solar radiation in the Fenton process (foto-Fenton process) showed degradation ratios of 70 and 80% respectively in 45 min. It was also observed that the iron-alginate matrix can be reused.