999 resultados para Fiber glasses
Resumo:
We propose a new information-theoretic metric, the symmetric Kullback-Leibler divergence (sKL-divergence), to measure the difference between two water diffusivity profiles in high angular resolution diffusion imaging (HARDI). Water diffusivity profiles are modeled as probability density functions on the unit sphere, and the sKL-divergence is computed from a spherical harmonic series, which greatly reduces computational complexity. Adjustment of the orientation of diffusivity functions is essential when the image is being warped, so we propose a fast algorithm to determine the principal direction of diffusivity functions using principal component analysis (PCA). We compare sKL-divergence with other inner-product based cost functions using synthetic samples and real HARDI data, and show that the sKL-divergence is highly sensitive in detecting small differences between two diffusivity profiles and therefore shows promise for applications in the nonlinear registration and multisubject statistical analysis of HARDI data.
Resumo:
Genetic analysis of diffusion tensor images (DTI) shows great promise in revealing specific genetic variants that affect brain integrity and connectivity. Most genetic studies of DTI analyze voxel-based diffusivity indices in the image space (such as 3D maps of fractional anisotropy) and overlook tract geometry. Here we propose an automated workflow to cluster fibers using a white matter probabilistic atlas and perform genetic analysis on the shape characteristics of fiber tracts. We apply our approach to large study of 4-Tesla high angular resolution diffusion imaging (HARDI) data from 198 healthy, young adult twins (age: 20-30). Illustrative results show heritability for the shapes of several major tracts, as color-coded maps.
Resumo:
We present a new algorithm to compute the voxel-wise genetic contribution to brain fiber microstructure using diffusion tensor imaging (DTI) in a dataset of 25 monozygotic (MZ) twins and 25 dizygotic (DZ) twin pairs (100 subjects total). First, the structural and DT scans were linearly co-registered. Structural MR scans were nonlinearly mapped via a 3D fluid transformation to a geometrically centered mean template, and the deformation fields were applied to the DTI volumes. After tensor re-orientation to realign them to the anatomy, we computed several scalar and multivariate DT-derived measures including the geodesic anisotropy (GA), the tensor eigenvalues and the full diffusion tensors. A covariance-weighted distance was measured between twins in the Log-Euclidean framework [2], and used as input to a maximum-likelihood based algorithm to compute the contributions from genetics (A), common environmental factors (C) and unique environmental ones (E) to fiber architecture. Quanititative genetic studies can take advantage of the full information in the diffusion tensor, using covariance weighted distances and statistics on the tensor manifold.
Resumo:
Fractional anisotropy (FA), a very widely used measure of fiber integrity based on diffusion tensor imaging (DTI), is a problematic concept as it is influenced by several quantities including the number of dominant fiber directions within each voxel, each fiber's anisotropy, and partial volume effects from neighboring gray matter. High-angular resolution diffusion imaging (HARDI) can resolve more complex diffusion geometries than standard DTI, including fibers crossing or mixing. The tensor distribution function (TDF) can be used to reconstruct multiple underlying fibers per voxel, representing the diffusion profile as a probabilistic mixture of tensors. Here we found that DTIderived mean diffusivity (MD) correlates well with actual individual fiber MD, but DTI-derived FA correlates poorly with actual individual fiber anisotropy, and may be suboptimal when used to detect disease processes that affect myelination. Analysis of the TDFs revealed that almost 40% of voxels in the white matter had more than one dominant fiber present. To more accurately assess fiber integrity in these cases, we here propose the differential diffusivity (DD), which measures the average anisotropy based on all dominant directions in each voxel.
Resumo:
As connectivity analyses become more popular, claims are often made about how the brain's anatomical networks depend on age, sex, or disease. It is unclear how results depend on tractography methods used to compute fiber networks. We applied 11 tractography methods to high angular resolution diffusion images of the brain (4-Tesla 105-gradient HARDI) from 536 healthy young adults. We parcellated 70 cortical regions, yielding 70×70 connectivity matrices, encoding fiber density. We computed popular graph theory metrics, including network efficiency, and characteristic path lengths. Both metrics were robust to the number of spherical harmonics used to model diffusion (4th-8th order). Age effects were detected only for networks computed with the probabilistic Hough transform method, which excludes smaller fibers. Sex and total brain volume affected networks measured with deterministic, tensor-based fiber tracking but not with the Hough method. Each tractography method includes different fibers, which affects inferences made about the reconstructed networks.
Resumo:
High-angular resolution diffusion imaging (HARDI) can reconstruct fiber pathways in the brain with extraordinary detail, identifying anatomical features and connections not seen with conventional MRI. HARDI overcomes several limitations of standard diffusion tensor imaging, which fails to model diffusion correctly in regions where fibers cross or mix. As HARDI can accurately resolve sharp signal peaks in angular space where fibers cross, we studied how many gradients are required in practice to compute accurate orientation density functions, to better understand the tradeoff between longer scanning times and more angular precision. We computed orientation density functions analytically from tensor distribution functions (TDFs) which model the HARDI signal at each point as a unit-mass probability density on the 6D manifold of symmetric positive definite tensors. In simulated two-fiber systems with varying Rician noise, we assessed how many diffusionsensitized gradients were sufficient to (1) accurately resolve the diffusion profile, and (2) measure the exponential isotropy (EI), a TDF-derived measure of fiber integrity that exploits the full multidirectional HARDI signal. At lower SNR, the reconstruction accuracy, measured using the Kullback-Leibler divergence, rapidly increased with additional gradients, and EI estimation accuracy plateaued at around 70 gradients.
Resumo:
Fiber Bragg Grating (FBG) accelerometers using transverse forces with an inertial object placed at the middle of the FBG have a high sensitivity but low resonant frequency. The resonant frequency 26 Hz and sensitivity at 6 Hz 1.29 nm/g were reported based on a 50mm-long FBG accelerometer. We demonstrate that the first FBG accelerometer based on a transversely rotating stick, which can, at the same or even larger size, keep the high sensitivity and significantly increase the low resonant frequency. In our experiments, a 77.5mm-long FBG accelerometer has achieved a similar sensitivity but 65% higher resonant frequency. This novel structure not only significantly widens the potential applications of FBG accelerometers by increasing their resonant frequencies but also provides a new route to design other accelerometers, e.g. micro accelerometers.
Resumo:
The elastic properties of sodium borovanadate glasses have been studied over a wide range of composition using ultrasonic measurements. It is found that variation of different elastic moduli is very similar in any given series of composition. The bulk and shear moduli show a monotonic variation with the covalent bond energy densities calculated from the proposed structural model for these glasses. The bulk moduli also vary as a negative power function of the mean atomic volume. The Debye temperature varies linearly with the glass transition temperature. The implications of the observed behavior have been discussed.
Resumo:
The EPR spectra of microwave-prepared 70NaPO(3):30PbO glasses containing different weight percentages of manganese ions have been studied. The EPR spectra exhibit a well-resolved hyperfine pattern at g(eff) approximate to 2.0. Optical absorption, fluorescent emission and excitation spectra of the glasses have been examined. The absorption spectrum exhibits a peak near 500 nm and this has been attributed to the spin-allowed E-5(g) --> T-5(2g) transition of Mn3+ ions. The emission spectrum shows a band at 595 nm which has been assigned to the T-4(1g)(G) --> (6)A(1g)(S) spin-forbidden transition of Mn2+ ions in octahedral coordination. Concentration quenching of fluorescence was found to occur above 0.75 wt% of Mn2+ ions. The excitation spectra exhibit four bands characteristic of Mn2+ ions in octahedral coordination. From the observed band positions of the excitation spectra, the crystal field parameter D-q and the Racah interelectronic repulsion parameters, B and C have been calculated. A structural model is proposed based on the IR, Raman and MASNMR studies according to which Mn2+ ions are likely to occupy sites similar to Na+ ions in these glasses.
Resumo:
Lithium silicophosphate glasses have been prepared by a sol-gel route over a wide range of compositions. Their structural and electrical properties have been investigated. Infrared spectroscopic studies show the presence of hydroxyl groups attached to Si and P. MAS NMR investigations provide evidence for the presence of different phosphatic units in the structure. The variations of de conductivities at 423 K and activation energies have been studied as a function of composition, and both exhibit an increasing trend with the ratio of nonbridging oxygen to bridging oxygen in the structure. Ac conductivity behavior shows that the power law exponent, s, is temperature dependent and exhibits a minimum. Relaxation behavior has been examined in detail using an electrical modulus formalism, and modulus data were fitted to Kohlraush-William-Watts stretched exponential function. A structural model has been proposed and the unusual properties exhibited by this unique system of glasses have been rationalized using this model. Ion transport in these glasses appears to be confined to unidimensional conduits defined by modified phosphate chains and interspersed with unmodified silica units.
Resumo:
Neutron diffraction measurement is carried out on GexSe1-x glasses, where 0.1 less than or equal to x less than or equal to 0.4, in a Q interval of 0.55-13.8 Angstrom(-1). The first sharp diffraction peak (FSDP) in the structure factor, S(Q), shows a systematic increase in the intensity and shifts to a lower Q with increasing Ge concentration. The coherence length of FSDP increases with x and becomes maximum for 0.33 less than or equal to x less than or equal to 0.4. The Monte-Carlo method, due to Soper, is used to generate S(Q) and also the pair correlation function, g(r). The generated S(Q) is in agreement with the experimental data for all x. Analysis of the first four peaks in the total correlation function, T(r), shows that the short range order in GeSe2 glass is due to Ge(Se-1/2)(4) tetrahedra, in agreement with earlier reports. Se-rich glasses contain Se-chains which are cross-linked with Ge(Se-1/2)(4) tetrahedra. Ge-2(Se-1/2)(6) molecular units are the basic structural units in Ge-rich, x = 0.4, glass. For x = 0.2, 0.33 and 0.4 there is evidence for some of the tetrahedra being in an edge-shared configuration. The number of edge-shared tetrahedra in these glasses increase with increasing Ge content.
Resumo:
An interesting, periodic appearance of a new peak has been observed in the reflected spectrum of a Fiber Bragg Grating (FBG) inscribed in a germanosilicate fiber during thermal treatment. The new peak occurs on the longer wavelength side of the spectrum during heating and on the shorter wavelength side during cooling, following an identical reverse dynamics. Comparison with a commercial grating with 99.9% reflectivity shows a similar decay dynamics. It is proposed that the distortion due to simultaneous erasure and thermal expansion of the index modulation profile may be responsible for the observed anomaly. The reported results help us in understanding the thermal behavior of FBGs and provide additional insights into the mechanisms responsible for the photosensitivity in germanosilicate fibers.
Resumo:
The thermal properties and electrical-switching behavior of semiconducting chalcogenide SbxSe55-xTe45 (2 <= x <= 9) glasses have been investigated by alternating differential scanning calorimetry and electrical-switching experiments, respectively. The addition of Sb is found to enhance the glass forming tendency and stability as revealed by the decrease in non-reversing enthalpy Delta H-nr. and an increase in the glass-transition width Delta T-g. Further, the glass-transition temperature of SbxSe55-xTe45 glasses, which is a measure of network connectivity, exhibits a subtle increase, suggesting a meager network growth with the addition of Sb. The crystallization temperature is also observed to increase with Sb content. The SbxSe55-xTe45 glasses (2 <= x <= 9) are found to exhibit memory type of electrical switching, which can be attributed to the polymeric nature of network and high devitrifying ability. The metallicity factor has been found to dominate over the network connectivity and rigidity in the compositional dependence of switching voltage. which shows a profound decrease with the addition of Sb.
Resumo:
Semieonducting GaxTe~oo-x (17 -< x _< 25) glasses have been prepared by melt quenching method and thermal crystallization studies carried out using differential scanning calorimetry. On heating, virgin GaxTel0o-x glasses exhibit one glass transition and two crystallization reactions.The first crystallization reaction corresponds to the precipitation of hexagonal Te and the second one to the crystallization of the matrix into zinc blende Ga2Te3 phase. If GaxTeloo-x glasses are quenched to ambient temperature from Tcrl and reheated, they exhibit the phenomenon of double glass transition.
Resumo:
We made a retrospective analysis of the efficacy and complication rate of 268 esophageal dilatation procedures performed under fluoroscopic control using the fiber-optic endoscope in 45 children with esophageal stricture. Antegrade and retrograde stricture dilatation was performed under general anesthetic, mainly as an outpatient procedure. Thirty-six children had an esophageal stricture following tracheoesophageal fistula and/or esophageal atresia repair, and nine children had severe corrosive stricture of the esophagus following lye ingestion. The procedure was well tolerated and effective. © 1992 Raven Press, Ltd., New York.