973 resultados para Ferro-nickel melting slags
Resumo:
Effect of heating rate on melting and crystallization of polyamide fibres has been examined using differential scanning calorimetric (DSC) technique. Peak temperature for melting (T m) and crystallization (T k) get suppressed with the increase in the heating rate which has been explained on the basis of chain orientation. Heat of melting (DeltaH m) and crystallization (DeltaH k) have been measured.DeltaH m vs. T m shows a nonlinear dependence which has been explained on the basis of entropy change. Quantitative difference inDeltaH m andDeltaH k values has been explained on the basis of orientation and degradation of the polymer.
Resumo:
The preparation and properties of five new dyes derived from nickel(I1) ions and aromatic azo derivatives of ethylenebls(P-ketoesters) are reported.
Resumo:
The complexing ability of a new series of ligands, β-N-arylimine hydrazones, toward Ni (II) and Cu (II) ions has been studied. The isolated complexes are characterised on the basis of elemental analysis, spectroscopic methods and magnetic susceptibility measurements. The ligands are notentially bidentate in character coordinating to divalent metal ions through the N1 and N5 nitrogens. Square planar geometry of the metal ions is suggested on the basis of experimental evidence.
Resumo:
Assignments of the infrared frequencies of methyl and ethyl xanthato complexes of nickel(II) have been made with the aid of normal coordinate analyses. The assignments are discussed in relation to those in related molecules.
Resumo:
Literature reveals that a low order priority has been given to foundry applications of the solar furnace for temperatures upto about 1000°C. In the present work, the performance of a solar furnace capable of melting small quantities of foundry-grade metals and alloys had been studied under various conditions. Crucibles of different materials and shapes were tried and the effect of having different heat-shield materials was also studied. Al---bronze crucible with cavity, and well-polished stainless stell heat-shield were found to be most effective in enhancing the efficiency of the furnace. Many important industrial applications of the present solar furnace, such as the recovery of metallic zinc from slags, had also been realised.
Resumo:
Nickel(I1) and palladium(I1) complexes of the types Ni(R-IAI)(IAI'), Pd(IAI)(IAI'), and Pd(R-IAI), , where IAI and IAI' represent isonitrosoacetylacetone imine and R-IAI represents its Aralkyl derivative, have been prepared. The molar conductance, molecular weight, magnetic moment, and ir, pmr, and electronic spectra of these com- plexes have been studied. It is suggested that the isonitroso group of R-IAI coordinates through the nitrogen and that of IAI' thiough the oxygen in Ni(R-IAI)(IAI'). In Pd(R-IAI), the isonitroso groups of both ligands coordinate through nitrogen while Pd(IAI)(IAI') has a structure similar to that of Ni(R-IAI)(IAI'). The amine- exchange reactions of nickel(I1) and palladium(I1) complexes are discussed and compared on the basis of their structures.
Resumo:
Aluminum-Nickel alloys ranging from 0.06 pct to 6.1 pct (by wt) Ni have been developed for high strength-high conductivity applications. These alloys were produced by solidification in a permanent mold followed by homogenization, hot extrusion or hot rolling and cold drawing to wire form. This sequence of fabrication a) led to the production of fine fibrous dispersoids of NiAl3 as part of the Al-NiAl3 eutectic during the initial casting operation, b) permitted the retention of fine fibrous dispersiods of NiAl3 produced during casting without any significant coarsening during processing and c) led to uniform dispersion and general alignment of these fibrous dispersoids along a given direction in the product without any measurable fiber-matrix separation, extensive fiber-fragmentation or crack production in the matrix. These alloys can be processed to wire form as easily as aluminum and when processed by the above sequence, possess very attractive combination of high strength-high electrical conductivity. Tensile strengths range from 173 N/mm2 (at 0.6 pct Ni) to 241 N/mm2 (at 6.1 pct Ni) in combination with corresponding conductivity values between 62 pct IACS and 55.5 pct IACS. The wires also possess attractive yield strength; for instance, the 0.2 pct off-set strength of Al-6.1 pct Ni wire is 213 N/mm2. Using simple composite rules, the estimated strength and the conductivity of NiAl3 fibers were found to be 1380 N/mm2 and 18 pct IACS respectively, in these wires.
Resumo:
The reaction of the title complexes (FIG. 1) with N-bromosuccinimide or bromine in chloroform yields isomeric bromo complexes on substitution of the γ-CH carbon proton by bromine. The brominated products have been characterised by ir, pmr, electronic absorption spectra, conductivity and magnetic susceptibility measurements. The linkage isomerisation of the brominated products in chloroform has been shown to depend on the diamine residue.
Resumo:
I-isonitroso-imine ligand complexes of nickel(II), namely, bis(isonitrosomethylacetoacetate-imino)Ni(II), Ni(IMI)(IMI); bis(isonitrosobenzoylacetoneimino)Ni(II), Ni(IBI)(IBI) and bis(isonitrosoacetoacetanilideimino)Ni(II), Ni(IANI)(IANI), have been prepared and characterized. On the basis of their spectroscopic and magnetic properties, these complexes are suggested to have a square-planar stereochemistry around the metal ion with both nitrogen (ligand denoted without prime) and oxygen (ligand denoted with prime) coordinated isonitroso groups. The i.r. and NMR spectra of these and other similar complexes are discussed.
Resumo:
The goal of this thesis was to examine the ecophysiological responses of Scots pine (Pinus sylvestris L.), with an emphasis on the oxidative enzyme peroxidase and plant phenolics to environmental stresses like elevated levels of nickel (Ni) and copper (Cu), and herbivory. The effects of Ni and Cu were studied in a gradient survey at a sulphur dioxide contaminated site in the Kola Peninsula, and with experiments in which seedlings were exposed to Ni mist or to Ni and Cu amended into the soil. In addition, experimental Ni exposure was combined with disturbance of the natural lichen cover of the forest ground layer. Pine sawfly attack was simulated in the early season defoliation experiment, in which mature Scots pine were defoliated (100 %) during two successive years in a dry, nutrient-poor Scots pine stand. In addition, the effect of previous defoliation on the growth of sawfly (Diprion pini L.) larvae was studied. Apoplastic peroxidase activity was elevated in the needles of pine in a Ni- , Cu- and SO2- polluted environment, which indicated an increased oxidative stress. Increased foliar peroxidase activity due to Ni contamination was shown in the experiment, in which Ni was added as mist. No such response was found in peroxidase acitivity of the roots exposed to elevated Ni and/or Cu in the soil. Elevated Ni in the soil increased the concentration of foliar condensed tannins, which are able to bind heavy metals in the cells. Addition of low levels of Ni in the soil appeared to benefit pine seedlings, which was seen as promoted shoot growth and better condition of the roots. Wet Ni deposition of 2000 mg m-2 reduced growth and survival of pine seedlings, whereas deposition levels 200 mg m-2 or 20 mg m-2 caused no effects in a 2-y lasting experiment. The lichen mat on the forest floor did not act as an effective buffer against the adverse impacts of heavy metals on pine seedlings. However, some evidence was found indicating that soil microbes profited from the lichen mat. Artificial defoliation increased peroxidase activity in the Scots pine needles. In addition, defoliation decreased nitrogen, diamine putrescine and glucose concentrations in the needles and increased the concentrations of several phenolic compounds, starch and sucrose. Previous artificial defoliation led to poor growth of sawfly larvae reared on the pines, suggesting delayed induced resistance in Scots pine. However, there was no consistent relationship between inducibility (proportional increase in a compound following defoliation) and adverse effects on the growth of pine sawfly larvae. The observed inducible responses in needle phenolics due to previous defoliation thus appear to represent non-specific responses against sawflies.
Resumo:
A probe, 9-(anthrylmethyl)trimethylammonium chloride, 1, was prepared. 1 binds to calf-thymus DNA or Escherichia coli genomic DNA with high affinity, as evidenced from the absorption titration. Strong hypochromism, spectral broadening and red-shifts in the absorption spectra were observed. Half-reciprocal plot constructed from this experiment gave binding constant of 5±0.5×104 M−1 in base molarity. We employed this anthryl probe-DNA complex for studying the effects of addition of various surfactant to DNA. Surfactants of different charge types and chain lengths were used in this study and the effects of surfactant addition to such probe-DNA complex were compared with that of small organic cations or salts. Addition of either salts or cationic surfactants led to structural changes in DNA and under these conditions, the probe from the DNA-bound complex appeared to get released. However, the cationic surfactants could induce such release of the probe from the probe-DNA complex at a much lower concentration than that of the small organic cations or salts. In contrast the anionic surfactants failed to promote any destabilization of such probe-DNA complexes. The effects of additives on the probe-DNA complexes were also examined by using a different technique (fluorescence spectroscopy) using a different probe ethidium bromide. The association complexes formed between the cationic surfactants and the plasmid DNA pTZ19R, were further examined under agarose gel electrophoresis and could not be visualized by ethidium bromide staining presumably due to cationic surfactant-induced condensation of DNA. Most of the DNA from such association complexes can be recovered by extraction of surfactants with phenol-chloroform. Inclusion of surfactants and other additives into the DNA generally enhanced the DNA melting temperatures by a few °C and at high [surfactant], the corresponding melting profiles got broadened.
Resumo:
[Ni(NCS)2(CHsN3S)2], Mr = 356.7, monoclinic, P21/c , a = 5-297 (1), b = 7.869 (1), c - 16-078 (2) A,/3 = 91.53 (1) °, V-= 669.9 A 3, Z= 2, Om = 1"76, Dx = 1"771 g cm -3, A(Mo Ka) = 0-71069 ]k, /.~ = 19"9 cm-l, F(000) = 364, T = 295 K, final R = 0.026 for 1576 significant [F > 10g(F)] reflections. The complex lies on a crystallographic centre of symmetry. The Ni atom is octahedrally coordinated by two thiocyanates (through N atoms) and by two thiosemicarbazide molecules (through hydrazinic N and S atoms). The crystal structure is stabilized by N--H...S hydrogen bonds. Early work on this structure [Garaj & Dunaj-Jurco (1968). Chem. Commun. p. 518] used photographic data and was refined to R = 0-13 for 512 reflections.