886 resultados para Feedback imediato
Resumo:
In many active noise control (ANC) applications, an online secondary path modelling method that uses a white noise as a training signal is required. This paper proposes a new feedback ANC system. Here we modified both the FxLMS and the VSS-LMS algorithms to raised noise attenuation and modelling accuracy for the overall system. The proposed algorithm stops injection of the white noise at the optimum point and reactivate the injection during the operation, if needed, to maintain performance of the system. Preventing continuous injection of the white noise increases the performance of the proposed method significantly and makes it more desirable for practical ANC systems. Computer simulation results shown in this paper indicate effectiveness of the proposed method.
Resumo:
The progress of technology has led to the increased adoption of energy monitors among household energy consumers. While the monitors available on the market deliver real-time energy usage feedback to the consumer, the form of this data is usually unengaging and mundane. Moreover, it fails to address consumers with different motivations and needs to save and compare energy. This master‟s thesis project presents a study that seeks to inform design guidelines for differently motivated energy consumers. The focus of the research is on comparative feedback supported by a community of energy consumers. In particular, the discussed comparative feedback types are explanatory comparison, temporal self-comparison, norm comparison, one-on-one comparison and ranking, whereby the last three support exploring the potential of socialising energy-related feedback in social networking sites, such as Facebook. These feedback types were integrated in EnergyWiz – a mobile application that enables users to compare with their past performance, neighbours, contacts from social networking sites and other EnergyWiz users. The application was developed through a theory-driven approach and evaluated in personal, semi-structured interviews which provided insights on how motivation-related comparative feedback should be designed. It was also employed in expert focus group discussions which resulted in defining opportunities and challenges before mobile, social energy monitors. The findings have unequivocally shown that users with different motivations to compare and to conserve energy have different preferences for comparative feedback types and design. It was established that one of the most influential factors determining design factors is the people users compare to. In addition, the research found that even simple communication strategies in Facebook, such as wall posts and groups can contribute to engagement with energy conservation practices. The concept of mobility of the application was evaluated as positive since it provides place and time-independent access to the energy consumption data.
Resumo:
This report describes the development of a whole of organization framework for obtaining client feedback for the Queensland Program of Assistance to Survivors of Torture and Trauma (QPASTT)
Resumo:
In Chapters 1 through 9 of the book (with the exception of a brief discussion on observers and integral action in Section 5.5 of Chapter 5) we considered constrained optimal control problems for systems without uncertainty, that is, with no unmodelled dynamics or disturbances, and where the full state was available for measurement. More realistically, however, it is necessary to consider control problems for systems with uncertainty. This chapter addresses some of the issues that arise in this situation. As in Chapter 9, we adopt a stochastic description of uncertainty, which associates probability distributions to the uncertain elements, that is, disturbances and initial conditions. (See Section 12.6 for references to alternative approaches to model uncertainty.) When incomplete state information exists, a popular observer-based control strategy in the presence of stochastic disturbances is to use the certainty equivalence [CE] principle, introduced in Section 5.5 of Chapter 5 for deterministic systems. In the stochastic framework, CE consists of estimating the state and then using these estimates as if they were the true state in the control law that results if the problem were formulated as a deterministic problem (that is, without uncertainty). This strategy is motivated by the unconstrained problem with a quadratic objective function, for which CE is indeed the optimal solution (˚Astr¨om 1970, Bertsekas 1976). One of the aims of this chapter is to explore the issues that arise from the use of CE in RHC in the presence of constraints. We then turn to the obvious question about the optimality of the CE principle. We show that CE is, indeed, not optimal in general. We also analyse the possibility of obtaining truly optimal solutions for single input linear systems with input constraints and uncertainty related to output feedback and stochastic disturbances.We first find the optimal solution for the case of horizon N = 1, and then we indicate the complications that arise in the case of horizon N = 2. Our conclusion is that, for the case of linear constrained systems, the extra effort involved in the optimal feedback policy is probably not justified in practice. Indeed, we show by example that CE can give near optimal performance. We thus advocate this approach in real applications.
Resumo:
In this note, we present a method to characterize the degradation in performance that arises in linear systems due to constraints imposed on the magnitude of the control signal to avoid saturation effects. We do this in the context of cheap control for tracking step signals.
Resumo:
This research has analysed both reciprocity and feedback mechanisms in multi-antenna wireless systems. It has presented the basis of an effective CSI feedback mechanism that efficiently provides the transmitter with the minimum information to allow the accurate knowledge of a rapidly changing channel. The simulations have been conducted using MATLAB to measure the improvement when the channel is estimated at the receiver in a 2 X 2 multi-antenna system and compared to the case of perfect channel knowledge at the receiver.
Resumo:
Background At Queensland University of Technology, student radiation therapists receive regular feedback from clinical staff relating to clinical interpersonal skills. Although this is of great value, there is anecdotal evidence that students communicate differently with patients when under observation. Purpose The aim of this pilot was to counter this perceived observer effect by allowing patients to provide students with additional feedback. Materials and methods Radiotherapy patients from two departments were provided with anonymous feedback forms relating to aspects of student interpersonal skills. Clinical assessors, mentors and students were also provided with feedback forms, including questions about the role of patient feedback. Patient perceptions of student performance were correlated with staff feedback and assessment scores. Results Results indicated that the feedback was valued by both students and patients. Students reported that the additional dimension focused them on communication, set goals for development and increased motivation. These changes derived from both feedback and study participation, suggesting that the questionnaires could be a useful teaching tool. Patients scored more generously than mentors, although there was agreement in relative grading. Conclusions The anonymous questionnaire is a convenient and valuable method of gathering patient feedback on students. Future iterations will determine the optimum timing for this method of feedback.
Resumo:
PURPOSE Every health care sector including hospice/palliative care needs to systematically improve services using patient-defined outcomes. Data from the national Australian Palliative Care Outcomes Collaboration aims to define whether hospice/palliative care patients' outcomes and the consistency of these outcomes have improved in the last 3 years. METHODS Data were analysed by clinical phase (stable, unstable, deteriorating, terminal). Patient-level data included the Symptom Assessment Scale and the Palliative Care Problem Severity Score. Nationally collected point-of-care data were anchored for the period July-December 2008 and subsequently compared to this baseline in six 6-month reporting cycles for all services that submitted data in every time period (n = 30) using individual longitudinal multi-level random coefficient models. RESULTS Data were analysed for 19,747 patients (46 % female; 85 % cancer; 27,928 episodes of care; 65,463 phases). There were significant improvements across all domains (symptom control, family care, psychological and spiritual care) except pain. Simultaneously, the interquartile ranges decreased, jointly indicating that better and more consistent patient outcomes were being achieved. CONCLUSION These are the first national hospice/palliative care symptom control performance data to demonstrate improvements in clinical outcomes at a service level as a result of routine data collection and systematic feedback.
Resumo:
In this paper conditional hidden Markov model (HMM) filters and conditional Kalman filters (KF) are coupled together to improve demodulation of differential encoded signals in noisy fading channels. We present an indicator matrix representation for differential encoded signals and the optimal HMM filter for demodulation. The filter requires O(N3) calculations per time iteration, where N is the number of message symbols. Decision feedback equalisation is investigated via coupling the optimal HMM filter for estimating the message, conditioned on estimates of the channel parameters, and a KF for estimating the channel states, conditioned on soft information message estimates. The particular differential encoding scheme examined in this paper is differential phase shift keying. However, the techniques developed can be extended to other forms of differential modulation. The channel model we use allows for multiplicative channel distortions and additive white Gaussian noise. Simulation studies are also presented.
Resumo:
Spurred on by both the 1987 Pearce Report1 and the general changes to higher education spawned by the “Dawkins revolution” from 1988, there has been much critical self-evaluation leading to profound improvements to the quality of teaching in Australian law schools.2 Despite the changes there are still areas of general law teaching practice which have lagged behind recent developments in our understanding of what constitutes high quality teaching. One such area is assessment criteria and feedback. The project Improving Feedback in Student Assessment in Law is an attempt to remedy this. It aims to produce a manual containing key principles for the design of assessment and the provision of feedback, with practical yet flexible ideas and illustrations which law teachers may adopt or modify. Most of the examples have been developed by teachers at the University of Melbourne Law School. The project was supported in 1996 by a Committee for the Advancement of University Teaching grant and the manual will be published late in 1997.3 This note summarises the core principles which are elaborated further in the manual.
Resumo:
This paper addresses the issue of output feedback model predictive control for linear systems with input constraints and stochastic disturbances. We show that the optimal policy uses the Kalman filter for state estimation, but the resultant state estimates are not utilized in a certainty equivalence control law
Resumo:
In a pilot application based on web search engine calledWeb-based Relation Completion (WebRC), we propose to join two columns of entities linked by a predefined relation by mining knowledge from the web through a web search engine. To achieve this, a novel retrieval task Relation Query Expansion (RelQE) is modelled: given an entity (query), the task is to retrieve documents containing entities in predefined relation to the given one. Solving this problem entails expanding the query before submitting it to a web search engine to ensure that mostly documents containing the linked entity are returned in the top K search results. In this paper, we propose a novel Learning-based Relevance Feedback (LRF) approach to solve this retrieval task. Expansion terms are learned from training pairs of entities linked by the predefined relation and applied to new entity-queries to find entities linked by the same relation. After describing the approach, we present experimental results on real-world web data collections, which show that the LRF approach always improves the precision of top-ranked search results to up to 8.6 times the baseline. Using LRF, WebRC also shows performances way above the baseline.