979 resultados para Fast test
Resumo:
The speed of absorption of dietary amino acids by the gut varies according to the type of ingested dietary protein. This could affect postprandial protein synthesis, breakdown, and deposition. To test this hypothesis, two intrinsically 13C-leucine-labeled milk proteins, casein (CAS) and whey protein (WP), of different physicochemical properties were ingested as one single meal by healthy adults. Postprandial whole body leucine kinetics were assessed by using a dual tracer methodology. WP induced a dramatic but short increase of plasma amino acids. CAS induced a prolonged plateau of moderate hyperaminoacidemia, probably because of a slow gastric emptying. Whole body protein breakdown was inhibited by 34% after CAS ingestion but not after WP ingestion. Postprandial protein synthesis was stimulated by 68% with the WP meal and to a lesser extent (+31%) with the CAS meal. Postprandial whole body leucine oxidation over 7 h was lower with CAS (272 ± 91 μmol⋅kg−1) than with WP (373 ± 56 μmol⋅kg−1). Leucine intake was identical in both meals (380 μmol⋅kg−1). Therefore, net leucine balance over the 7 h after the meal was more positive with CAS than with WP (P < 0.05, WP vs. CAS). In conclusion, the speed of protein digestion and amino acid absorption from the gut has a major effect on whole body protein anabolism after one single meal. By analogy with carbohydrate metabolism, slow and fast proteins modulate the postprandial metabolic response, a concept to be applied to wasting situations.
Resumo:
Context. Classical supergiant X-ray binaries (SGXBs) and supergiant fast X-ray transients (SFXTs) are two types of high-mass X-ray binaries (HMXBs) that present similar donors but, at the same time, show very different behavior in the X-rays. The reason for this dichotomy of wind-fed HMXBs is still a matter of debate. Among the several explanations that have been proposed, some of them invoke specific stellar wind properties of the donor stars. Only dedicated empiric analysis of the donors’ stellar wind can provide the required information to accomplish an adequate test of these theories. However, such analyses are scarce. Aims. To close this gap, we perform a comparative analysis of the optical companion in two important systems: IGR J17544-2619 (SFXT) and Vela X-1 (SGXB). We analyze the spectra of each star in detail and derive their stellar and wind properties. As a next step, we compare the wind parameters, giving us an excellent chance of recognizing key differences between donor winds in SFXTs and SGXBs. Methods. We use archival infrared, optical and ultraviolet observations, and analyze them with the non-local thermodynamic equilibrium (NLTE) Potsdam Wolf-Rayet model atmosphere code. We derive the physical properties of the stars and their stellar winds, accounting for the influence of X-rays on the stellar winds. Results. We find that the stellar parameters derived from the analysis generally agree well with the spectral types of the two donors: O9I (IGR J17544-2619) and B0.5Iae (Vela X-1). The distance to the sources have been revised and also agree well with the estimations already available in the literature. In IGR J17544-2619 we are able to narrow the uncertainty to d = 3.0 ± 0.2 kpc. From the stellar radius of the donor and its X-ray behavior, the eccentricity of IGR J17544-2619 is constrained to e< 0.25. The derived chemical abundances point to certain mixing during the lifetime of the donors. An important difference between the stellar winds of the two stars is their terminal velocities (ν∞ = 1500 km s-1 in IGR J17544-2619 and ν∞ = 700 km s-1 in Vela X-1), which have important consequences on the X-ray luminosity of these sources. Conclusions. The donors of IGR J17544-2619 and Vela X-1 have similar spectral types as well as similar parameters that physically characterize them and their spectra. In addition, the orbital parameters of the systems are similar too, with a nearly circular orbit and short orbital period. However, they show moderate differences in their stellar wind velocity and the spin period of their neutron star which has a strong impact on the X-ray luminosity of the sources. This specific combination of wind speed and pulsar spin favors an accretion regime with a persistently high luminosity in Vela X-1, while it favors an inhibiting accretion mechanism in IGR J17544-2619. Our study demonstrates that the relative wind velocity is critical in class determination for the HMXBs hosting a supergiant donor, given that it may shift the accretion mechanism from direct accretion to propeller regimes when combined with other parameters.
Resumo:
"November 1956."
Resumo:
Acoustic stimuli within the sonic range are effective triggers of C-type escape behaviours in fish. We have previously shown that fish have an acute sensitivity to infrasound also, with acceleration thresholds in the range of 10(-5) m s(-2). In addition, infrasound at high intensities around 10(-2) m s(-2) elicits strong and sustained avoidance responses in several fish species. In the present study, the possible triggering of C-escapes by infrasonic single-cycle vibrations was examined in juvenile roach Rutilus rutilus. The fish were accelerated in a controlled and quantifiable manner using a swing system. The applied stimuli simulated essential components of the accelerations that a small fish would encounter in the hydrodynamic flow field produced by a predatory fish. Typical C- and S-type escape responses were induced by accelerations within the infrasonic range with a threshold of 0.023 m s(-2) for an initial acceleration at 6.7 Hz. Response trajectories were on average in the same direction as the initial acceleration. Unexpectedly, startle behaviours mainly occurred in the trailing half of the test chamber, in which the fish were subjected to linear acceleration in combination with compression, i.e. the expected stimuli produced by an approaching predator. Very few responses were observed in the leading half of the test chamber, where the fish were subjected to acceleration and rarefaction, i.e. the stimuli expected from a suction type of predator. We conclude that particle acceleration is essential for the directionality of the startle response to infrasound, and that the response is triggered by the synergistic effects of acceleration and compression.
Resumo:
Fast pyrolysis liquid or bio-oil has been used in engines with limited success. It requires a pilot fuel and/or an additive for successful combustion and there are problems with materials and liquid properties. It is immiscible with all conventional hydrocarbon fuels. Biodiesel, a product of esterification of vegetable oil with an alcohol, is widely used as a renewable liquid fuel as an additive to diesel at up to 20%. There are however limits to its use in conventional engines due to poor low temperature performance and variability in quality from a variety of vegetable oil qualities and variety of esterification processes. Within the European Project Bioliquids-CHP - a joint project between the European Commission and Russia - a study was undertaken to develop small scale CHP units based on engines and microturbines fuelled with bioliquids from fast pyrolysis and methyl esters of vegetable oil. Blends of bio-oil and biodiesel were evaluated and tested to overcome some of the disadvantages of using either fuel by itself. An alcohol was used as the co-solvent in the form of ethanol, 1-butanol or 2-propanol. Visual inspection of the blend homogeneity after 48 h was used as an indicator of the product stability and the results were plotted in a three phase chart for each alcohol used. An accelerated stability test was performed on selected samples in order to predict its long term stability. We concluded that the type and quantity of alcohol is critical for the blend formation and stability. Using 1-butanol gave the widest selection of stable blends, followed by blends with 2-propanol and finally ethanol, thus 1-butanol blends accepted the largest proportion of bio-oil in the mixture. © 2013 Elsevier Ltd. All rights reserved.
Resumo:
The objective of this work was to design, construct, test and operate a novel circulating fluid bed fast pyrolysis reactor system for production of liquids from biomass. The novelty lies in incorporating an integral char combustor to provide autothermal operation. A reactor design methodology was devised which correlated input parameters to process variables, namely temperature, heat transfer and gas/vapour residence time, for both the char combustor and biomass pyrolyser. From this methodology a CFB reactor was designed with integral char combustion for 10 kg/h biomass throughput. A full-scale cold model of the CFB unit was constructed and tested to derive suitable hydrodynamic relationships and performance constraints. Early difficulties encountered with poor solids circulation and inefficient product recovery were overcome by a series of modifications. A total of 11 runs in a pyrolysis mode were carried out with a maximum total liquids yield of 61.50% wt on a maf biomass basis, obtained at 500°C and with 0.46 s gas/vapour residence time. This could be improved by improved vapour recovery by direct quenching up to an anticipated 75 % wt on a moisture-and-ash-free biomass basis. The reactor provides a very high specific throughput of 1.12 - 1.48 kg/hm2 and the lowest gas-to-feed ratio of 1.3 - 1.9 kg gas/kg feed compared to other fast pyrolysis processes based on pneumatic reactors and has a good scale-up potential. These features should provide significant capital cost reduction. Results to date suggest that the process is limited by the extent of char combustion. Future work will address resizing of the char combustor to increase overall system capacity, improvement in solid separation and substantially better liquid recovery. Extended testing will provide better evaluation of steady state operation and provide data for process simulation and reactor modeling.
Resumo:
In this paper we discuss a fast Bayesian extension to kriging algorithms which has been used successfully for fast, automatic mapping in emergency conditions in the Spatial Interpolation Comparison 2004 (SIC2004) exercise. The application of kriging to automatic mapping raises several issues such as robustness, scalability, speed and parameter estimation. Various ad-hoc solutions have been proposed and used extensively but they lack a sound theoretical basis. In this paper we show how observations can be projected onto a representative subset of the data, without losing significant information. This allows the complexity of the algorithm to grow as O(n m 2), where n is the total number of observations and m is the size of the subset of the observations retained for prediction. The main contribution of this paper is to further extend this projective method through the application of space-limited covariance functions, which can be used as an alternative to the commonly used covariance models. In many real world applications the correlation between observations essentially vanishes beyond a certain separation distance. Thus it makes sense to use a covariance model that encompasses this belief since this leads to sparse covariance matrices for which optimised sparse matrix techniques can be used. In the presence of extreme values we show that space-limited covariance functions offer an additional benefit, they maintain the smoothness locally but at the same time lead to a more robust, and compact, global model. We show the performance of this technique coupled with the sparse extension to the kriging algorithm on synthetic data and outline a number of computational benefits such an approach brings. To test the relevance to automatic mapping we apply the method to the data used in a recent comparison of interpolation techniques (SIC2004) to map the levels of background ambient gamma radiation. © Springer-Verlag 2007.
Resumo:
In the present work the neutron emission spectra from a graphite cube, and from natural uranium, lithium fluoride, graphite, lead and steel slabs bombarded with 14.1 MeV neutrons were measured to test nuclear data and calculational methods for D - T fusion reactor neutronics. The neutron spectra measured were performed by an organic scintillator using a pulse shape discrimination technique based on a charge comparison method to reject the gamma rays counts. A computer programme was used to analyse the experimental data by the differentiation unfolding method. The 14.1 MeV neutron source was obtained from T(d,n)4He reaction by the bombardment of T - Ti target with a deuteron beam of energy 130 KeV. The total neutron yield was monitored by the associated particle method using a silicon surface barrier detector. The numerical calculations were performed using the one-dimensional discrete-ordinate neutron transport code ANISN with the ZZ-FEWG 1/ 31-1F cross section library. A computer programme based on Gaussian smoothing function was used to smooth the calculated data and to match the experimental data. There was general agreement between measured and calculated spectra for the range of materials studied. The ANISN calculations carried out with P3 - S8 calculations together with representation of the slab assemblies by a hollow sphere with no reflection at the internal boundary were adequate to model the experimental data and hence it appears that the cross section set is satisfactory and for the materials tested needs no modification in the range 14.1 MeV to 2 MeV. Also it would be possible to carry out a study on fusion reactor blankets, using cylindrical geometry and including a series of concentric cylindrical shells to represent the torus wall, possible neutron converter and breeder regions, and reflector and shielding regions.
Resumo:
An international round robin study of the viscosity measurements and aging of fast pyrolysis bio-oil has been undertaken recently, and this work is an outgrowth from that effort. Two bio-oil samples were distributed to two laboratories for accelerated aging tests and to three laboratories of long-term aging studies. The accelerated aging test was defined as the change in viscosity of a sealed sample of bio-oil held for 24 h at 80 °C. The test was repeated 10 times over consecutive days to determine the intra-laboratory repeatability of the method. Other bio-oil samples were placed in storage at three temperatures, 21, 5, and -17 °C, for a period of up to 1 year to evaluate the change in viscosity. The variation in the results of the accelerated aging test was shown to be low within a given laboratory. The long-term aging studies showed that storage of a filtered bio-oil under refrigeration can minimize the amount of change in viscosity. The accelerated aging test gave a measure of change similar to that of 6-12 months of storage at room temperature for a filtered bio-oil. Filtration of solids was identified as a key contributor to improving the stability of the bio-oil as expressed by the viscosity based on results of the accelerated aging tests as well as long-term aging studies. Only the filtered bio-oil consistently gave useful results in the accelerated aging and long-term aging studies. The inconsistency suggests that better protocols need to be developed for sampling bio-oils. These results can be helpful in setting standards for use of bio-oil, which is just coming into the marketplace. © 2012 American Chemical Society.
Resumo:
An international round robin study of the stability of fast pyrolysis bio-oil was undertaken. Fifteen laboratories in five different countries contributed. Two bio-oil samples were distributed to the laboratories for stability testing and further analysis. The stability test was defined in a method provided with the bio-oil samples. Viscosity measurement was a key input. The change in viscosity of a sealed sample of bio-oil held for 24 h at 80 °C was the defining element of stability. Subsequent analyses included ultimate analysis, density, moisture, ash, filterable solids, and TAN/pH determination, and gel permeation chromatography. The results showed that kinematic viscosity measurement was more generally conducted and more reproducibly performed versus dynamic viscosity measurement. The variation in the results of the stability test was great and a number of reasons for the variation were identified. The subsequent analyses proved to be at the level of reproducibility, as found in earlier round robins on bio-oil analysis. Clearly, the analyses were more straightforward and reproducible with a bio-oil sample low in filterable solids (0.2%), compared to one with a higher (2%) solids loading. These results can be helpful in setting standards for use of bio-oil, which is just coming into the marketplace. © 2012 American Chemical Society.
Resumo:
Miscanthus × giganteus was subjected to pre-treatment with deionised water, hydrochloric acid or Triton X-100 surfactant, and subsequently fast pyrolysed in a fluidised bed reactor at 535 °C to obtain bio-oil. Triton X-100 surfactant was identified as a promising pre-treatment medium for removal of inorganic matter because its physicochemical nature was expected to mobilise inorganic matter in the biomass matrix. The influence of different concentrations of Triton X-100 pre-treatment solutions on the quality of bio-oil produced from fast pyrolysis was studied, as defined by a single phase bio-oil, viscosity index and water content index. The highest concentration of Triton X-100 surfactant produced the best quality bio-oil with high organic yield and low reaction water content. The calculated viscosity index from the accelerated ageing test showed that bio-oil stability improved as the concentration of Triton X-100 increased. © 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license.
Resumo:
Hydrogenated amorphous carbon films with diamond like structures have been formed on different substrates at very low energies and temperatures by a plasma enhanced chemical vapor deposition process employing acetylene as the precursor gas. The plasma source was of a cascaded arc type with Ar as carrier gas. The films were grown at very high deposition rates. Deposition on Si, glass and plastic substrates has been studied and the films characterized in terms of sp3 content, roughness, hardness, adhesion and optical properties. Deposition rates up to 20 nm/s have been achieved at substrate temperatures below 100°C. The typical sp3 content of 60-75% in the films was determined by X-ray generated Auger electron spectroscopy. Hardness, reduced modulus and adhesion were measured using a MicroMaterials Nano Test Indenter/Scratch tester. Hardness was found to vary from 4 to 13 GPa depending on deposition conditions. Adhesion was significantly influenced by the substrate temperature and in situ DC cleaning. Hydrogen content in the film was measured by a combination of the Fourier transform infrared and Rutherford backscattering techniques. Advantages of these films are: low ion energy and deposition temperature, very high deposition rates, low capital cost of the equipment and the possibility of film properties being tailored according to the desired application.
Resumo:
There are situations in which it is very important to quickly and positively identify an individual. Examples include suspects detained in the neighborhood of a bombing or terrorist incident, individuals detained attempting to enter or leave the country, and victims of mass disasters. Systems utilized for these purposes must be fast, portable, and easy to maintain. The goal of this project was to develop an ultra fast, direct PCR method for forensic genotyping of oral swabs. The procedure developed eliminates the need for cellular digestion and extraction of the sample by performing those steps in the PCR tube itself. Then, special high-speed polymerases are added which are capable of amplifying a newly developed 7 loci multiplex in under 16 minutes. Following the amplification, a postage stamp sized microfluidic device equipped with specially designed entangled polymer separation matrix, yields a complete genotype in 80 seconds. The entire process is rapid and reliable, reducing the time from sample to genotype from 1-2 days to under 20 minutes. Operation requires minimal equipment and can be easily performed with a small high-speed thermal-cycler, reagents, and a microfluidic device with a laptop. The system was optimized and validated using a number of test parameters and a small test population. The overall precision was better than 0.17 bp and provided a power of discrimination greater than 1 in 106. The small footprint, and ease of use will permit this system to be an effective tool to quickly screen and identify individuals detained at ports of entry, police stations and remote locations. The system is robust, portable and demonstrates to the forensic community a simple solution to the problem of rapid determination of genetic identity.
Resumo:
The main research objective of this study was to find out whether perceived value significantly affects consumers’ purchase intention. Additionally, this study examined if there are any significant differences in perceived value for different fast-food restaurant brands and attempted to identify which fast-food restaurant is perceived to be the industry leader. A total number of six fast-food restaurants (McDonalds, Subway, Starbucks, Wendy’s, Burger King, and Taco Bell) were selected. Findings showed that among the five perceived service value dimensions, Starbucks is the leader in terms of quality, emotional response, and reputation. Multivariate analysis of variance (MANOVA) and multiple regression analysis were performed to test the study hypotheses. Results indicated that there were significant differences in perceived value for different fast-food restaurant brands. Besides, monetary and behavioral price significantly affects consumers’ purchase intention. Findings are expected to help hospitality marketers to strategically manage their brands.
Resumo:
Purpose
The objective of our study was to test a new approach to approximating organ dose by using the effective energy of the combined 80kV/140kV beam used in fast kV switch dual-energy (DE) computed tomography (CT). The two primary focuses of the study were to first validate experimentally the dose equivalency between MOSFET and ion chamber (as a gold standard) in a fast kV switch DE environment, and secondly to estimate effective dose (ED) of DECT scans using MOSFET detectors and an anthropomorphic phantom.
Materials and Methods
A GE Discovery 750 CT scanner was employed using a fast-kV switch abdomen/pelvis protocol alternating between 80 kV and 140 kV. The specific aims of our study were to (1) Characterize the effective energy of the dual energy environment; (2) Estimate the f-factor for soft tissue; (3) Calibrate the MOSFET detectors using a beam with effective energy equal to the combined DE environment; (4) Validate our calibration by using MOSFET detectors and ion chamber to measure dose at the center of a CTDI body phantom; (5) Measure ED for an abdomen/pelvis scan using an anthropomorphic phantom and applying ICRP 103 tissue weighting factors; and (6) Estimate ED using AAPM Dose Length Product (DLP) method. The effective energy of the combined beam was calculated by measuring dose with an ion chamber under varying thicknesses of aluminum to determine half-value layer (HVL).
Results
The effective energy of the combined dual-energy beams was found to be 42.8 kV. After calibration, tissue dose in the center of the CTDI body phantom was measured at 1.71 ± 0.01 cGy using an ion chamber, and 1.73±0.04 and 1.69±0.09 using two separate MOSFET detectors. This result showed a -0.93% and 1.40 % difference, respectively, between ion chamber and MOSFET. ED from the dual-energy scan was calculated as 16.49 ± 0.04 mSv by the MOSFET method and 14.62 mSv by the DLP method.