969 resultados para Famine, Citrate, Cellulose


Relevância:

20.00% 20.00%

Publicador:

Resumo:

CeO2 nanometer powders of different sizes were prepared at low temperature by pyrolysis of amorphous citrate. XRD patterns show that CeO2 is cubic in structure, space group O-h(5)-F-M3M. TEM indicates that the prepared CeO2 is spherical in shape, and the particle size distribution is in narrow range. It was found that calcination temperature is a more important factor affecting the crystallite size of CeO2 than calcining time, the smaller the particle, the bigger the crystal lattice distortion, the worse the crystal growth. Solubility test of CeO2 in nitric acid reveals that the surface activity of CeO2 decreases with the increasing particle sizes. IR spectra analysis shows that the absorption of Ce-O bond is shifted to higher energy with the decrease of CeO2 particle sizes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aqueous complexation of lanthanide complexes of citrate in pH 7.4 solutions has been studied by using lanthanide-induced shift and relaxation times measurement methods. These results indicate that citrate coordinate via 3-hydroxyl and 3-carboxylate groups with lanthanide ions and form 1:2 (Ln/cit) isostructural complexes through lanthanide series. We suggest a new coordination geometry which is different from that described in literature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aqueous complexation of lanthanide ions with citrate in pH 7.4 solution has been investigated with use of the lanthanide-induced shift and paramagnetic relaxation rate enhancement methods. The results show that citrate coordinates via hydroxyl and central carboxylate groups with lanthanide ions and forms 1:2 (Ln/cit) isostructural complexes through the lanthanide series. A new possible coordination geometry deduced from our experimental data is suggested and discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The original cellulose fibers and those treated by alkaline solution were both used to prepare the acrylic membranes. The two kinds of membranes were packed into the columns for high-performance immunoaffinity chromatography by the immobilization of protein A on them. It was observed that the alkaline treatment of the cellulose fiber decreased the pressure resistance of the membrane to the mobile phases and greatly increased the accessible volume to the proteins, but affected the adsorption capacity of human IgG on the protein A membrane columns less. There is little difference between those two kinds of membranes on the adsorption capacities of HIgG, which means that the alkaline treatment of the cellulose fiber only significantly changes the void volume inter-membrane, and the porosity and surface area of membrane less. Alkaline treatment of the cellulose fiber reduced the membrane-column efficiency significantly. Some typical examples for the immunoaffinity analysis of IgG from human and dog plasma on the protein A membrane columns are illustrated. Copyright (C) 2000 John Wiley & Sons, Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

La-0.8Sr(0).2CoO(3) (LSCO) oxide powder was prepared using the adsorption properties of cellulose. The preparation process was studied by XRD, FTIR, TG-DTA and CO2-TPD techniques. The results of XRD, IR and TG-DTA testified that cellulose could successfully reserve the homogeneity of the solution system to the solid precursor. During the early stage of pyrolysis, cellulose was partially oxidized, and some COO- groups appeared in its texture, which were then complexed with the adsorbed metal ions, and effectively suppressed the aggregation of metal ions. Formation of a pure perovskite and the properties of the powder resulted were found to be significantly influenced by the cellulose to metal nitrate ratio. Also the properties of the resulting powder were greatly influenced by the calcination conditions. If the produced carbon dioxide could not be eluted in time, carbonate would be formed in the bulk. Hence, a high calcination temperature (> 800 degreesC) was needed to acquire a pure phase LSCO. At optimized conditions, nano-crystal LSCO could be obtained at as low as 500 degreesC.