922 resultados para Fabrication of the test antenna
Resumo:
This paper presents some initial attempts to mathematically model the dynamics of a continuous estimation of distribution algorithm (EDA) based on a Gaussian distribution and truncation selection. Case studies are conducted on both unimodal and multimodal problems to highlight the effectiveness of the proposed technique and explore some important properties of the EDA. With some general assumptions, we show that, for ID unimodal problems and with the (mu, lambda) scheme: (1). The behaviour of the EDA is dependent only on the general shape of the test function, rather than its specific form; (2). When initialized far from the global optimum, the EDA has a tendency to converge prematurely; (3). Given a certain selection pressure, there is a unique value for the proposed amplification parameter that could help the EDA achieve desirable performance; for ID multimodal problems: (1). The EDA could get stuck with the (mu, lambda) scheme; (2). The EDA will never get stuck with the (mu, lambda) scheme.
Resumo:
The fabrication of sub-micron periodic structures beyond diffraction limit is a major motivation for the present paper. We describe the fabrication of the periodic structure of 25 mm long with a pitch size of 260 nm which is less than a third of the wavelength used. This is the smallest reported period of the periodic structure inscribed by direct point-by-point method. A prototype of the add-drop filter, which utilizes such gratings, was demonstrated in one stage fabrication process of femtosecond inscription, in the bulk fused silica.
Resumo:
The fabrication of sub-micron periodic structures beyond diffraction limit is a major motivation for the present paper. We describe the fabrication of the periodic structure of 25 mm long with a pitch size of 260 nm which is less than a third of the wavelength used. This is the smallest reported period of the periodic structure inscribed by direct point-by-point method. A prototype of the add-drop filter, which utilizes such gratings, was demonstrated in one stage fabrication process of femtosecond inscription, in the bulk fused silica.
Resumo:
The work presented in this thesis is concerned with the dynamic behaviour of structural joints which are both loaded, and excited, normal to the joint interface. Since the forces on joints are transmitted through their interface, the surface texture of joints was carefully examined. A computerised surface measuring system was developed and computer programs were written. Surface flatness was functionally defined, measured and quantised into a form suitable for the theoretical calculation of the joint stiffness. Dynamic stiffness and damping were measured at various preloads for a range of joints with different surface textures. Dry clean and lubricated joints were tested and the results indicated an increase in damping for the lubricated joints of between 30 to 100 times. A theoretical model for the computation of the stiffness of dry clean joints was built. The model is based on the theory that the elastic recovery of joints is due to the recovery of the material behind the loaded asperities. It takes into account, in a quantitative manner, the flatness deviations present on the surfaces of the joint. The theoretical results were found to be in good agreement with those measured experimentally. It was also found that theoretical assessment of the joint stiffness could be carried out using a different model based on the recovery of loaded asperities into a spherical form. Stepwise procedures are given in order to design a joint having a particular stiffness. A theoretical model for the loss factor of dry clean joints was built. The theoretical results are in reasonable agreement with those experimentally measured. The theoretical models for the stiffness and loss factor were employed to evaluate the second natural frequency of the test rig. The results are in good agreement with the experimentally measured natural frequencies.
Resumo:
In this paper we report, for the first time to our knowledge, an increase of the photosensitivity of a microstructured polymer optical fibre (mPOF) made of undoped PMMA due to applied strain during the fabrication of the gratings. In the work, fibre Bragg gratings (FBGs) have been fabricated in undoped PMMA mPOFs with a hexagonal structure of three rings in the inner cladding. Two sets of FBGs were inscribed at two different resonant wavelengths (827 nm and 1562 nm) at different strains using an UV He-Cd laser at 325 nm focused by a lens and scanned over the fibre. We observed an increase of the reflection of the fibre Bragg gratings when the fabrication strain is higher. The photosensitivity mechanism is discussed in the paper along with the chemical reactions that could underlie the mechanism. Furthermore, the resolution limit of the material was investigated. © 2014 Copyright SPIE.
Resumo:
A lean menedzsment egészségügyi szolgáltatásokra való alkalmazásával elérhető eredmények egyre inkább nyilvánvalóvá válnak. Ennek köszönhetően a szektorban dinamikus növekedés tapasztalható ezen a téren. A kutatások azonban arra hívják fel a figyelmet, hogy a lean menedzsment alkalmazásával elért eredmények csak akkor lesznek fenntarthatóak, ha az eszközök alkalmazását a kultúra átalakulása is követi. A kultúra változásának követéséhez annak folyamatos értékelésére van szükség. A szervezeti kultúra lean-specifikus méréséhez azonban – a szerzők tudomása szerint – még nincs kidolgozott eszköz. Ezért cikkükben a kapcsolódó szakirodalom áttekintése után kidolgoztak egy lean kultúra kérdőívet, majd bemutatják a kérdőív tesztelését és annak eredményeit. Összegzésként elmondható, hogy az itt bemutatott kérdőív az első tesztelés alapján további fejlesztésre szorul. / === / The results that can be obtained by applying lean management in healthcare services become more and more clear. This generates a dynamic increase of lean applications in healthcare. However, researches are warning that the res ults obtained by lean applications can only be sustained, if next to the use of the lean tools cultural change will also take place. In order to track changes in culture its constant evaluation is necessary. According to the authors’ knowledge today does not exist any lean-specific culture evaluation tool. In this paper they elaborate a lean culture questionnaire based on the review of relevant literature. Than they describe its test and the results of the test. The authors conclude that the questionnaire as introduced here needs further improvement.
Resumo:
Goodness-of-fit tests have been studied by many researchers. Among them, an alternative statistical test for uniformity was proposed by Chen and Ye (2009). The test was used by Xiong (2010) to test normality for the case that both location parameter and scale parameter of the normal distribution are known. The purpose of the present thesis is to extend the result to the case that the parameters are unknown. A table for the critical values of the test statistic is obtained using Monte Carlo simulation. The performance of the proposed test is compared with the Shapiro-Wilk test and the Kolmogorov-Smirnov test. Monte-Carlo simulation results show that proposed test performs better than the Kolmogorov-Smirnov test in many cases. The Shapiro Wilk test is still the most powerful test although in some cases the test proposed in the present research performs better.
Resumo:
The major objective of this research project is to investigate how fly ash influences the chemical durability of portland cement based materials. The testing program is evaluating how Iowa fly ashes influence the sulfate durability of portland cement-fly ash pastes, mortars, and concretes. Also, alkali-reactivity studies are being conducted on mortar bar specimens prepared in accordance with ASTM C 311. Prelimary sulfate test results, based only on mortar bar studies, indicate that only the very high-calcium fly ash (29 percent CaO, by weight) consistently reduced the durability of test specimens exposed to a solution containing 5 percent sodium sulfate. The remaining four fly ashes that were used in the study showed negligible to dramatic increases in sulfate resistance. Concrete specimens were only beginning to respond to the sulfate solutions after about one year of exposure; and hence, considerably more time will be needed to assess their performance. Preliminary results from the alkali-reactivity tests have indicated that the Oreopolis aggregate is not sensitive to alkali attack. However, some of the test results have indicated that the testing procedure may be prone to delayed expansion due to the presence of periclase (MgO) in the Class C fly ashes. Research is being planned to: (1) verify if the periclase is influencing test results; and (2) estimating the magnitude of the potential error.
Resumo:
In recent papers, Wied and his coauthors have introduced change-point procedures to detect and estimate structural breaks in the correlation between time series. To prove the asymptotic distribution of the test statistic and stopping time as well as the change-point estimation rate, they use an extended functional Delta method and assume nearly constant expectations and variances of the time series. In this thesis, we allow asymptotically infinitely many structural breaks in the means and variances of the time series. For this setting, we present test statistics and stopping times which are used to determine whether or not the correlation between two time series is and stays constant, respectively. Additionally, we consider estimates for change-points in the correlations. The employed nonparametric statistics depend on the means and variances. These (nuisance) parameters are replaced by estimates in the course of this thesis. We avoid assuming a fixed form of these estimates but rather we use "blackbox" estimates, i.e. we derive results under assumptions that these estimates fulfill. These results are supplement with examples. This thesis is organized in seven sections. In Section 1, we motivate the issue and present the mathematical model. In Section 2, we consider a posteriori and sequential testing procedures, and investigate convergence rates for change-point estimation, always assuming that the means and the variances of the time series are known. In the following sections, the assumptions of known means and variances are relaxed. In Section 3, we present the assumptions for the mean and variance estimates that we will use for the mean in Section 4, for the variance in Section 5, and for both parameters in Section 6. Finally, in Section 7, a simulation study illustrates the finite sample behaviors of some testing procedures and estimates.
Resumo:
Phytochemical analyses as well as antimicrobial and antioxidant activities of the extracts of C. sumatrensis aerial parts were investigated in this study. METHODS: The aerial parts of C. sumatrensis were air dried, weighed and exhaustively extracted with hexane, ethyl acetate and methanol successively. The crude extracts were screened for metabolites. These extracts of the plant were evaluated for antimicrobial and antioxidant activities using agar diffusion and DPPH method respectively. The extracts were also analysed using Gas chromatography – Mass spectrometry, and the chromatogram coupled with mass spectra of the compounds were matched with a standard library. RESULTS: Preliminary phytochemical investigation of crude n-hexane, ethyl acetate and methanol extracts of the aerial parts of Conyza sumatrensis revealed the presence of anthraquinones, flavonoids, terpenoids, phenolics, tannin, glycosides and carbohydrate. All the crude extracts gave a clear zone of inhibition against the growth of the test bacteria ( Staphylococcus aureus , Escherichia coli , Bacillus subtilis , Pseudomona aeruginosa, Salmonella typhi , Klebsiellae pneumonae ) at moderate to high concentrations, as well as test fungi ( Candida albicans , Aspergillus niger , penicillium notatum and Rhizopus stolonifer ) at high concentration. Methanolic extract exhibited significant radical scavenging property with IC50 of 17.08 μg/mL while n-hexane and ethyl acetate extracts showed no significant antioxidant activity. GC-MS of N-hexane extract showed a total number of eleven chemical constituents with α-Farnesene and spathulenol being the most abundance compounds constituting 20.27 and 22.28% of the extract respectively. Ethyl acetate extract revealed thirteen compounds with two most abundant compounds, cis-β-farnesene (16.64 %) and cis-pinane (21.09 %). While methanolic extract affords seventeen compounds with Ephytol being the most abundant compound (19.36 %).
Resumo:
Due to the existence of global modes and local modes of the neighbouring members, damage detection on a structure is more challenging than damage on isolated beams. Detection of an artificial circumferential crack on a joint in a frame-like welded structure is studied in this paper using coupled response measurements. Similarity to real engineering structures is maintained in the fabrication of the test frame. Both the chords and the branch members have hollow sections and the branch members have smaller sizes. The crack is created by a hacksaw on a joint where a branch meets the chord. The methodology is first demonstrated on a single hollow section beam. The test results are then presented for the damaged and undamaged frame. The existence of the damage is clearly observable from the experimental results. It is suggested that this approach offers the-potential to detect damage in welded structures such as cranes, mining equipment, steel-frame bridges, naval and offshore structures. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
Detection of a fatigue crack in a welded frame structure is studied in this paper using coupled response measurements. Similarity to real engineering structures is maintained in the fabrication of the test frame with hollow section chords and branch members. The fatigue crack was created by a special reciprocating mechanism that generates cyclic stress on a beam member of the structure. The methodology of coupled response measurements is first demonstrated on a single hollow section beam by analytical simulation and experimental validation. The issues of using this approach for fatigue crack detection in real structures are then examined. Finally, the experimental results of the frame under different scenarioes are presented. The existence of the crack is clearly observable from the FRF plots. It is suggested that this approach offers the potential to detect cracks in welded frame structures and is a useful tool for routine maintenance work and health assessment.
Resumo:
A new approach for the control of the size of particles fabricated using the Electrohydrodynamic Atomization (EHDA) method is being developed. In short, the EHDA process produces solution droplets in a controlled manner, and as the solvent evaporates from the surface of the droplets, polymeric particles are formed. By varying the voltage applied, the size of the droplets can be changed, and consequently, the size of the particles can also be controlled. By using both a nozzle electrode and a ring electrode placed axisymmetrically and slightly above the nozzle electrode, we are able to produce a Single Taylor Cone Single Jet for a wide range of voltages, contrary to just using a single nozzle electrode where the range of permissible voltage for the creation of the Single Taylor Cone Single Jet is usually very small. Phase Doppler Particle Analyzer (PDPA) test results have shown that the droplet size increases with increasing voltage applied. This trend is predicted by the electrohydrodynamic theory of the Single Taylor Cone Single Jet based on a perfect dielectric fluid model. Particles fabricated using different voltages do not show much change in the particles size, and this may be attributed to the solvent evaporation process. Nevertheless, these preliminary results do show that this method has the potential of providing us with a way of fine controlling the particles size using relatively simple method with trends predictable by existing theories.
Resumo:
Understanding how a living cell behaves has become a very important topic in today’s research field. Hence, different sensors and testing devices have been designed to test the mechanical properties of these living cells. This thesis presents a method of micro-fabricating a bio-MEMS based force sensor which is used to measure the force response of living cells. Initially, the basic concepts of MEMS have been discussed and the different micro-fabrication techniques used to manufacture various MEMS devices have been described. There have been many MEMS based devices manufactured and employed for testing many nano-materials and bio-materials. Each of the MEMS based devices described in this thesis use a novel concept of testing the specimens. The different specimens tested are nano-tubes, nano-wires, thin film membranes and biological living cells. Hence, these different devices used for material testing and cell mechanics have been explained. The micro-fabrication techniques used to fabricate this force sensor has been described and the experiments preformed to successfully characterize each step in the fabrication have been explained. The fabrication of this force sensor is based on the facilities available at Michigan Technological University. There are some interesting and uncommon concepts in MEMS which have been observed during this fabrication. These concepts in MEMS which have been observed are shown in multiple SEM images.
Resumo:
One important task in the design of an antenna is to carry out an analysis to find out the characteristics of the antenna that best fulfills the specifications fixed by the application. After that, a prototype is manufactured and the next stage in design process is to check if the radiation pattern differs from the designed one. Besides the radiation pattern, other radiation parameters like directivity, gain, impedance, beamwidth, efficiency, polarization, etc. must be also evaluated. For this purpose, accurate antenna measurement techniques are needed in order to know exactly the actual electromagnetic behavior of the antenna under test. Due to this fact, most of the measurements are performed in anechoic chambers, which are closed areas, normally shielded, covered by electromagnetic absorbing material, that simulate free space propagation conditions, due to the absorption of the radiation absorbing material. Moreover, these facilities can be employed independently of the weather conditions and allow measurements free from interferences. Despite all the advantages of the anechoic chambers, the results obtained both from far-field measurements and near-field measurements are inevitably affected by errors. Thus, the main objective of this Thesis is to propose algorithms to improve the quality of the results obtained in antenna measurements by using post-processing techniques and without requiring additional measurements. First, a deep revision work of the state of the art has been made in order to give a general vision of the possibilities to characterize or to reduce the effects of errors in antenna measurements. Later, new methods to reduce the unwanted effects of four of the most commons errors in antenna measurements are described and theoretical and numerically validated. The basis of all them is the same, to perform a transformation from the measurement surface to another domain where there is enough information to easily remove the contribution of the errors. The four errors analyzed are noise, reflections, truncation errors and leakage and the tools used to suppress them are mainly source reconstruction techniques, spatial and modal filtering and iterative algorithms to extrapolate functions. Therefore, the main idea of all the methods is to modify the classical near-field-to-far-field transformations by including additional steps with which errors can be greatly suppressed. Moreover, the proposed methods are not computationally complex and, because they are applied in post-processing, additional measurements are not required. The noise is the most widely studied error in this Thesis, proposing a total of three alternatives to filter out an important noise contribution before obtaining the far-field pattern. The first one is based on a modal filtering. The second alternative uses a source reconstruction technique to obtain the extreme near-field where it is possible to apply a spatial filtering. The last one is to back-propagate the measured field to a surface with the same geometry than the measurement surface but closer to the AUT and then to apply also a spatial filtering. All the alternatives are analyzed in the three most common near-field systems, including comprehensive noise statistical analyses in order to deduce the signal-to-noise ratio improvement achieved in each case. The method to suppress reflections in antenna measurements is also based on a source reconstruction technique and the main idea is to reconstruct the field over a surface larger than the antenna aperture in order to be able to identify and later suppress the virtual sources related to the reflective waves. The truncation error presents in the results obtained from planar, cylindrical and partial spherical near-field measurements is the third error analyzed in this Thesis. The method to reduce this error is based on an iterative algorithm to extrapolate the reliable region of the far-field pattern from the knowledge of the field distribution on the AUT plane. The proper termination point of this iterative algorithm as well as other critical aspects of the method are also studied. The last part of this work is dedicated to the detection and suppression of the two most common leakage sources in antenna measurements. A first method tries to estimate the leakage bias constant added by the receiver’s quadrature detector to every near-field data and then suppress its effect on the far-field pattern. The second method can be divided into two parts; the first one to find the position of the faulty component that radiates or receives unwanted radiation, making easier its identification within the measurement environment and its later substitution; and the second part of this method is able to computationally remove the leakage effect without requiring the substitution of the faulty component. Resumen Una tarea importante en el diseño de una antena es llevar a cabo un análisis para averiguar las características de la antena que mejor cumple las especificaciones fijadas por la aplicación. Después de esto, se fabrica un prototipo de la antena y el siguiente paso en el proceso de diseño es comprobar si el patrón de radiación difiere del diseñado. Además del patrón de radiación, otros parámetros de radiación como la directividad, la ganancia, impedancia, ancho de haz, eficiencia, polarización, etc. deben ser también evaluados. Para lograr este propósito, se necesitan técnicas de medida de antenas muy precisas con el fin de saber exactamente el comportamiento electromagnético real de la antena bajo prueba. Debido a esto, la mayoría de las medidas se realizan en cámaras anecoicas, que son áreas cerradas, normalmente revestidas, cubiertas con material absorbente electromagnético. Además, estas instalaciones se pueden emplear independientemente de las condiciones climatológicas y permiten realizar medidas libres de interferencias. A pesar de todas las ventajas de las cámaras anecoicas, los resultados obtenidos tanto en medidas en campo lejano como en medidas en campo próximo están inevitablemente afectados por errores. Así, el principal objetivo de esta Tesis es proponer algoritmos para mejorar la calidad de los resultados obtenidos en medida de antenas mediante el uso de técnicas de post-procesado. Primeramente, se ha realizado un profundo trabajo de revisión del estado del arte con el fin de dar una visión general de las posibilidades para caracterizar o reducir los efectos de errores en medida de antenas. Después, se han descrito y validado tanto teórica como numéricamente nuevos métodos para reducir el efecto indeseado de cuatro de los errores más comunes en medida de antenas. La base de todos ellos es la misma, realizar una transformación de la superficie de medida a otro dominio donde hay suficiente información para eliminar fácilmente la contribución de los errores. Los cuatro errores analizados son ruido, reflexiones, errores de truncamiento y leakage y las herramientas usadas para suprimirlos son principalmente técnicas de reconstrucción de fuentes, filtrado espacial y modal y algoritmos iterativos para extrapolar funciones. Por lo tanto, la principal idea de todos los métodos es modificar las transformaciones clásicas de campo cercano a campo lejano incluyendo pasos adicionales con los que los errores pueden ser enormemente suprimidos. Además, los métodos propuestos no son computacionalmente complejos y dado que se aplican en post-procesado, no se necesitan medidas adicionales. El ruido es el error más ampliamente estudiado en esta Tesis, proponiéndose un total de tres alternativas para filtrar una importante contribución de ruido antes de obtener el patrón de campo lejano. La primera está basada en un filtrado modal. La segunda alternativa usa una técnica de reconstrucción de fuentes para obtener el campo sobre el plano de la antena donde es posible aplicar un filtrado espacial. La última es propagar el campo medido a una superficie con la misma geometría que la superficie de medida pero más próxima a la antena y luego aplicar también un filtrado espacial. Todas las alternativas han sido analizadas en los sistemas de campo próximos más comunes, incluyendo detallados análisis estadísticos del ruido con el fin de deducir la mejora de la relación señal a ruido lograda en cada caso. El método para suprimir reflexiones en medida de antenas está también basado en una técnica de reconstrucción de fuentes y la principal idea es reconstruir el campo sobre una superficie mayor que la apertura de la antena con el fin de ser capaces de identificar y después suprimir fuentes virtuales relacionadas con las ondas reflejadas. El error de truncamiento que aparece en los resultados obtenidos a partir de medidas en un plano, cilindro o en la porción de una esfera es el tercer error analizado en esta Tesis. El método para reducir este error está basado en un algoritmo iterativo para extrapolar la región fiable del patrón de campo lejano a partir de información de la distribución del campo sobre el plano de la antena. Además, se ha estudiado el punto apropiado de terminación de este algoritmo iterativo así como otros aspectos críticos del método. La última parte de este trabajo está dedicado a la detección y supresión de dos de las fuentes de leakage más comunes en medida de antenas. El primer método intenta realizar una estimación de la constante de fuga del leakage añadido por el detector en cuadratura del receptor a todos los datos en campo próximo y después suprimir su efecto en el patrón de campo lejano. El segundo método se puede dividir en dos partes; la primera de ellas para encontrar la posición de elementos defectuosos que radian o reciben radiación indeseada, haciendo más fácil su identificación dentro del entorno de medida y su posterior substitución. La segunda parte del método es capaz de eliminar computacionalmente el efector del leakage sin necesidad de la substitución del elemento defectuoso.