925 resultados para FE model updating
Resumo:
To accomplish laser-induced thermal loading simulation tests for pistons,the Gaussian beam was modulated into multi-circular beam with specific intensity distribution.A reverse method was proposed to design the intensity distribution for the laser-induced thermal loading based on finite element(FE) analysis.Firstly,the FE model is improved by alternating parameters of boundary conditions and thermal-physical properties of piston material in a reasonable range,therefore it can simulate the experimental resul...
Resumo:
Sandwich beams comprising identical face sheets and a square honeycomb core were manufactured from carbon fiber composite sheets. Analytical expressions were derived for four competing collapse mechanisms of simply supported and clamped sandwich beams in three-point bending: core shear, face microbuckling, face wrinkling, and indentation. Selected geometries of sandwich beams were tested to illustrate these collapse modes, with good agreement between analytic predictions and measurements of the failure load. Finite element (FE) simulations of the three-point bending responses of these beams were also conducted by constructing a FE model by laying up unidirectional plies in appropriate orientations. The initiation and growth of damage in the laminates were included in the FE calculations. With this embellishment, the FE model was able to predict the measured load versus displacement response and the failure sequence in each of the composite beams. © 2011 American Society of Mechanical Engineers.
Resumo:
A cyclic bending experiment is designed to investigate the interface fracture behaviour of a hard chromium coating on a ductile substrate with periodic surface hardened regions. The unique deflection pattern of the vertical cracks after they run through the coating and impinge at the interface is revealed experimentally. A simple double-layer elastic beam model is adopted to investigate the interfacial shear stresses analytically. A FE model is employed to compute the stresses of the tri-phase structure under a single round of bending, and to investigate the effect of the loading conditions on the deflection pattern of the vertical cracks at the interface. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The forces cells apply to their surroundings control biological processes such as growth, adhesion, development, and migration. In the past 20 years, a number of experimental techniques have been developed to measure such cell tractions. These approaches have primarily measured the tractions applied by cells to synthetic two-dimensional substrates, which do not mimic in vivo conditions for most cell types. Many cell types live in a fibrous three-dimensional (3D) matrix environment. While studying cell behavior in such 3D matrices will provide valuable insights for the mechanobiology and tissue engineering communities, no experimental approaches have yet measured cell tractions in a fibrous 3D matrix.
This thesis describes the development and application of an experimental technique for quantifying cellular forces in a natural 3D matrix. Cells and their surrounding matrix are imaged in three dimensions with high speed confocal microscopy. The cell-induced matrix displacements are computed from the 3D image volumes using digital volume correlation. The strain tensor in the 3D matrix is computed by differentiating the displacements, and the stress tensor is computed by applying a constitutive law. Finally, tractions applied by the cells to the matrix are computed directly from the stress tensor.
The 3D traction measurement approach is used to investigate how cells mechanically interact with the matrix in biologically relevant processes such as division and invasion. During division, a single mother cell undergoes a drastic morphological change to split into two daughter cells. In a 3D matrix, dividing cells apply tensile force to the matrix through thin, persistent extensions that in turn direct the orientation and location of the daughter cells. Cell invasion into a 3D matrix is the first step required for cell migration in three dimensions. During invasion, cells initially apply minimal tractions to the matrix as they extend thin protrusions into the matrix fiber network. The invading cells anchor themselves to the matrix using these protrusions, and subsequently pull on the matrix to propel themselves forward.
Lastly, this thesis describes a constitutive model for the 3D fibrous matrix that uses a finite element (FE) approach. The FE model simulates the fibrous microstructure of the matrix and matches the cell-induced matrix displacements observed experimentally using digital volume correlation. The model is applied to predict how cells mechanically sense one another in a 3D matrix. It is found that cell-induced matrix displacements localize along linear paths. These linear paths propagate over a long range through the fibrous matrix, and provide a mechanism for cell-cell signaling and mechanosensing. The FE model developed here has the potential to reveal the effects of matrix density, inhomogeneity, and anisotropy in signaling cell behavior through mechanotransduction.
Resumo:
In conventional Finite Element Analysis (FEA) of radial-axial ring rolling (RAR) the motions of all tools are usually defined prior to simulation in the preprocessing step. However, the real process holds up to 8 degrees of freedom (DOF) that are controlled by industrial control systems according to actual sensor values and preselected control strategies. Since the histories of the motions are unknown before the experiment and are dependent on sensor data, the conventional FEA cannot represent the process before experiment. In order to enable the usage of FEA in the process design stage, this approach integrates the industrially applied control algorithms of the real process including all relevant sensors and actuators into the FE model of ring rolling. Additionally, the process design of a novel process 'the axial profiling', in which a profiled roll is used for rolling axially profiled rings, is supported by FEA. Using this approach suitable control strategies can be tested in virtual environment before processing. © 2013 AIP Publishing LLC.
Resumo:
This paper investigates the design and modelling of an integrated device for acoustic resonance spectroscopy (ARS). Miniaturisation of such platforms can be achieved using MEMS technology thereby enabling scaling of device dimensions to investigate smaller specimens while simultaneously operating at higher frequencies. We propose an integrated device where the transducers are mounted in close proximity with the specimen to be analysed (e.g. by integrating ultrasound transducers within a microfluidic channel). A finite element (FE) model and a simplified analytical model have been constructed to predict the acoustic response of a sample embedded in such a device configuration. A FE simulation is performed in COMSOL by embedding the piezoelectric transducers in representative fluid media. Resonant frequencies associated with the measurement can be extracted from this data. The response of various media modelled through FEA matches with analytical predictions for a range of biological media. A variety of biological media may be identified by using the measured resonant frequencies as a signature of relevant physical characteristics. The paper establishes the modelling basis of an integrated acoustic resonant spectrometer that is then applied to examine the impact of geometrical scaling on system resolution. © 2013 IEEE.
Resumo:
In this paper, the transverse rocking mechanism of a barrel vaulted structure subjected to horizontal cyclic loads is analysed by means of experimental tests on full scale model and by means of non-linear FE analyses. The study is part of an ongoing experimental and theoretical research program, developed by the University of Brescia, concerning the seismic behaviour of ancient masonry buildings. The scope of the paper is to provide some evidence of the rocking mechanism experienced by barrel vaulted structures under horizontal loading. The understanding of the behaviour of these structural systems is necessary for their seismic vulnerability assessment, as well as for the correct design of possible strengthening techniques. A numeric FE model was validated through comparison with the experimental results and it was used to verify the efficiency of two common strengthening solutions: the technique of the overlaying reinforced concrete slab and the technique of the thin spandrel walls. Experimental and numeric results will be discussed in the paper.
Resumo:
In this paper, the experimental study on the rocking behaviour of a full scale barrel vaulted structure undergo cyclic horizontal loading is discussed. The study is the first part of an ongoing experimental and theoretical research program, developed by the University of Brescia, concerning the seismic behaviour of masonry buildings. The scope of the paper is to provide some evidence of the rocking mechanism experienced by barrel vaulted structures undergo horizontal loading. Understanding of the behaviour of such structural systems is fundamental for their seismic vulnerability assessment, as well as for the correct design of possible strengthening techniques. The structural behaviour is also investigated by means of non linear finite element analyses. Numerical results are validated through comparison with experimental results. After validation, the FE model can be applied to different case studies.
Resumo:
Field emission (FE) from a single-layer ultra-thin semiconductor film cathode (SUSC) on a metal substrate has been investigated theoretically. The self-consistent quantum FE model is developed by synthetically considering the energy band bending and electron scattering. As a typical example, we calculate the FE properties of ultra-thin A1N film with an adjustable film thickness from 1 to 10 nm. The calculated results show that the FE characteristic is evidently modulated by varying the film thickness, and there is an optimum thickness of about 3 nm. Furthermore, a four-step FE mechanism is suggested such that the distinct FE current of a SUSC is rooted in the thickness sensitivity of its quantum structure, and the optimum FE properties of the SUSC should be attributed to the change in the effective potential combined with the attenuation of electron scattering.
Resumo:
Multi-waves and multi-component get more and more attentions from oil industry. On the basis of existent research results, My research focuses on some key steps of OBC 4C datum processing. OBC datum must be preprocessed quite well for getting a good image. We show a flow chart of preprocess including attenuation of noise on multi-component datum、elimination ghost by summing P and Z and rotation of horizontal components. This is a good foundation for the coming steps about OBC processing. How to get exact converted point location and to analyze velocity are key points in processing reflection seismic converted wave data. This paper includes computing converted point location, analyzing velocity and nonhyperbolic moveout about converted waves. Anisotropic affects deeply the location of converted wave and the nonhyperbolic moveout. Supposed VTI, we research anisotropic effect on converted wave location and the moveout. Since Vp/Vs is important, we research the compute method of Vp/Vs from post-stack data and pre-stack data. It is a part of the paper that inversing anisotropic parameter by traveltime. Pre-stack time migration of converted wave is an focus, using common-offset Kirchhoff migration, we research the velocity model updating in anisotropic media. I have achieved the following results: 1) using continued Fractions, we proposed a new converted point approximate equation, when the offset is long enough ,the thomsen’s 2 order equation can’t approximate to the exact location of converted point, our equation is a good approximate for the exact location. 2) our new methods about scanning nonhyperbolic velocity and Vp/Vs can get a high quality energy spectrum. And the new moveout can fit the middle and long offset events. Processing the field data get a good result. 3) a new moveout equation, which have the same form as Alkhalifah’s long offset P wave moveout equation, have the same degree preciseness as thomsen’s moveout equation by testing model data. 4) using c as a function of the ratio offset to depth, we can uniform the Li’s and thomsen’s moveout equation in a same equation, the model test tell us choice the reasonable function C can improve the exact degree of Li’s and thomsen’s equation. 5) using traveltime inversion ,we can get anisotropic parameter, which can help to flat the large offset event and propose a model of anisotropic parameter which will useful for converted wave pre-stack time migration in anisotropic media. 6)using our pre-stack time migration method and flow, we can update the velocity model and anisotropic parameter model then get good image. Key words: OBC, Common converted Point (CCP), Nonhyperbolic moveout equation, Normal moveout correction, Velocity analysis, Anisotropic parameters inversion, Kirchhoff anisotropic pre-stack time migration, migration velocity model updating
Resumo:
The relationship between the damage caused at different thermal cycles is very important. The whole of accelerated thermal cycle testing is based on the premise that damage at one cycle is representative of damage at a different cycle. In this paper, the relative damage caused by six thermal cycle profiles are predicted using Finite Element (FE) modelling and the results validated against experiments. Both creep strain and strain energy density were used as damage indicators and creep strain was found to correlate better with experiment. The validated FE model is then used to investigate the effect of altering each of the thermal profile parameters (ramp and swell times, hot and cold temperatures). The components used for testing are surface mount resistors - 1206, 0805 and 0603. The solders investigated are eutectic SnAgCu and eutectic SnAg.
Resumo:
This work describes the work of an investigation of the effects of solder reflow process on the reliability of anisotropic conductive film (ACF) interconnection for flip-chip on flex (FCOF) applications. Experiments as well as computer modeling methods have been used. The results show that the contact resistance of ACF interconnections increases after the reflow and the magnitude of the increase is strongly correlated to the peak reflow temperature. In fact, nearly 40 percent of the joints are open when the peak reflow temperature is 260°C, while there is no opening when the peak temperature is 210°C. It is believed that the coefficient of thermal expansion (CTE) mismatch between the polymer particle and the adhesive matrix is the main cause of this contact degradation. To understand this phenomenon better, a three-dimensional (3-D) finite element (FE) model of an ACF joint has been analyzed in order to predict the stress distribution in the conductive particles, adhesive matrix and metal pads during the reflow process. The stress level at the interface between the particle and its surrounding materials is significant and it is the highest at the interface between the particle and the adhesive matrix.
Resumo:
Aircraft fuselages are complex assemblies of thousands of components and as a result simulation models are highly idealised. In the typical design process, a coarse FE model is used to determine loads within the structure. The size of the model and number of load cases necessitates that only linear static behaviour is considered. This paper reports on the development of a modelling approach to increase the accuracy of the global model, accounting for variations in stiffness due to non-linear structural behaviour. The strategy is based on representing a fuselage sub-section with a single non-linear element. Large portions of fuselage structure are represented by connecting these non-linear elements together to form a framework. The non-linear models are very efficient, reducing computational time significantly
Resumo:
A full-scale 34 m composite wind turbine blade was tested to failure under flap-wise loading. Local displacement measurement equipment was developed and displacements were recorded throughout the loading history.
Ovalization of the load carrying box girder was measured in the full-scale test and simulated in non-linear FE-calculations. The nonlinear Brazier effect is characterized by a crushing pressure which causes the ovalization. To capture this effect, non-linear FE-analyses at different scales were employed. A global non-linear FE-model of the entire blade was prepared and the boundaries to a more detailed sub-model were extracted. The FE-model was calibrated based on full-scale test measurements.
Local displacement measurements helped identify the location of failure initiation which lead to catastrophic failure. Comparisons between measurements and FE-simulations showed that delamination of the outer skin was the initial failure mechanism followed by delamnination buckling which then led to collapse.
Resumo:
Despite the increased applications of the composite materials in aerospace due to their exceptional physical and mechanical properties, the machining of composites remains a challenge. Fibre reinforced laminated composites are prone to different damages during machining process such as delamination, fibre pull-out, microcracks, thermal damages. Optimization of the drilling process parameters can reduces the probability of these damages. In the current research, a 3D finite element (FE) model is developed of the process of drilling in the carbon fibre reinforced composite (CFC). The FE model is used to investigate the effects of cutting speed and feed rate on thrust force, torque and delamination in the drilling of carbon fiber reinforced laminated composite. A mesoscale FE model taking into account of the different oriented plies and interfaces has been proposed to predict different damage modes in the plies and delamination. For validation purposes, experimental drilling tests have been performed and compared to the results of the finite element analysis. Using Matlab a digital image analysis code has been developed to assess the delamination factor produced in CFC as a result of drilling. © Springer Science+Business Media B.V. 2011.