975 resultados para Experimental data
Resumo:
Flow maldistribution of the exhaust gas entering a Diesel Particulate Filter (DPF) can cause uneven soot distribution during loading and excessive temperature gradients during the regeneration phase. Minimising the magnitude of this maldistribution is therefore an important consideration in the design of the inlet pipe and diffuser, particularly in situations where packaging constraints dictate bends in the inlet pipe close to the filter, or a sharp diffuser angle. This paper describes the use of Particle Image Velocimetry (PIV) to validate a Computational Fluid Dynamic (CFD) model of the flow within the inlet diffuser of a DPF so that CFD can be used with confidence as a tool to minimise this flow maldistribution. PIV is used to study the flow of gas into a DPF over a range of steady state flow conditions. The distribution of flow approaching the front face of the substrate was of particular interest to this study. Optically clear diffusing cones were designed and placed between pipe and substrate to allow PIV analysis to take place. Stereoscopic PIV was used to eliminate any error produced by the optical aberrations caused by looking through the curved wall of the inlet cone. In parallel to the experiments, numerical analysis was carried out using a CFD program with an incorporated DPF model. Boundary conditions for the CFD simulations were taken from the experimental data, allowing an experimental validation of the numerical results. The CFD model incorporated a DPF model, the cement layers seen in segmented filters and the intumescent matting that is commonly used to pack the filter into a metal casing. The mesh contained approximately 580,000 cells and used the realizable ?-e turbulence model. The CFD simulation predicted both pressure drop across the DPF and the velocity field within the cone and at the DPF face with reasonable accuracy, providing confidence in the use the CFD in future work to design new, more efficient cones.
Resumo:
Acoustic predictions of the recently developed TRACEO ray model, which accounts for bottom shear properties, are benchmarked against tank experimental data from the EPEE-1 and EPEE-2 (Elastic Parabolic Equation Experiment) experiments. Both experiments are representative of signal propagation in a Pekeris-like shallow-water waveguide over a non-flat isotropic elastic bottom, where significant interaction of the signal with the bottom can be expected. The benchmarks show, in particular, that the ray model can be as accurate as a parabolic approximation model benchmarked in similar conditions. The results of benchmarking are important, on one side, as a preliminary experimental validation of the model and, on the other side, demonstrates the reliability of the ray approach for seismo-acoustic applications. (C) 2012 Acoustical Society of America. [http://dx.doi.org/10.1121/1.4734236]
Resumo:
In a series of attempts to research and document relevant sloshing type phenomena, a series of experiments have been conducted. The aim of this paper is to describe the setup and data processing of such experiments. A sloshing tank is subjected to angular motion. As a result pressure registers are obtained at several locations, together with the motion data, torque and a collection of image and video information. The experimental rig and the data acquisition systems are described. Useful information for experimental sloshing research practitioners is provided. This information is related to the liquids used in the experiments, the dying techniques, tank building processes, synchronization of acquisition systems, etc. A new procedure for reconstructing experimental data, that takes into account experimental uncertainties, is presented. This procedure is based on a least squares spline approximation of the data. Based on a deterministic approach to the first sloshing wave impact event in a sloshing experiment, an uncertainty analysis procedure of the associated first pressure peak value is described.
Resumo:
The temperature and the composition of the vapor–liquid–liquid equilibrium (VLLE) and the vapor–liquid equilibrium (VLE) of a ternary mixture of water–n-butanol–cyclohexane were measured at atmospheric pressure (101.32 kPa) in a modified dynamic recirculating still. As found in the literature, the experimental data obtained reveal a ternary azeotrope at 341.86 K with a mole fraction composition of 0.281, 0.034, and 0.685 water, n-butanol, and cyclohexane, respectively. The liquid–liquid equilibrium (LLE) compositions were measured at a constant temperature of 313.15 K and compared with data in the literature collected at other temperatures. Thermodynamic consistency of all the experimental data was demonstrated. The universal quasichemical (UNIQUAC) and the nonrandom two-liquid (NRTL) thermodynamic models were used to correlate the VLE and LLE data, while the original universal functional (UNIFAC) model was used to compare the predicted data.
Resumo:
The thermodynamic consistency of almost 90 VLE data series, including isothermal and isobaric conditions for systems of both total and partial miscibility in the liquid phase, has been examined by means of the area and point-to-point tests. In addition, the Gibbs energy of mixing function calculated from these experimental data has been inspected, with some rather surprising results: certain data sets exhibiting high dispersion or leading to Gibbs energy of mixing curves inconsistent with the total or partial miscibility of the liquid phase, surprisingly, pass the tests. Several possible inconsistencies in the tests themselves or in their application are discussed. Related to this is a very interesting and ambitious initiative that arose within the NIST organization: the development of an algorithm to assess the quality of experimental VLE data. The present paper questions the applicability of two of the five tests that are combined in the algorithm. It further shows that the deviation of the experimental VLE data from the correlation obtained by a given model, the basis of some point-to-point tests, should not be used to evaluate the quality of these data.
Resumo:
This paper provides information on the experimental set-up, data collection methods and results to date for the project Large scale modelling of coarse grained beaches, undertaken at the Large Wave Channel (GWK) of FZK in Hannover by an international group of researchers in Spring 2002. The main objective of the experiments was to provide full scale measurements of cross-shore processes on gravel and mixed beaches for the verification and further development of cross-shore numerical models of gravel and mixed sediment beaches. Identical random and regular wave tests were undertaken for a gravel beach and a mixed sand/gravel beach set up in the flume. Measurements included profile development, water surface elevation along the flume, internal pressures in the swash zone, piezometric head levels within the beach, run-up, flow velocities in the surf-zone and sediment size distributions. The purpose of the paper is to present to the scientific community the experimental procedure, a summary of the data collected, some initial results, as well as a brief outline of the on-going research being carried out with the data by different research groups. The experimental data is available to all the scientific community following submission of a statement of objectives, specification of data requirements and an agreement to abide with the GWK and EU protocols. (C) 2005 Elsevier B.V. All rights reserved.
Resumo:
We present algorithms, systems, and experimental results for underwater data muling. In data muling a mobile agent interacts with static agents to upload, download, or transport data to a different physical location. We consider a system comprising an Autonomous Underwater Vehicle (AUV) and many static Underwater Sensor Nodes (USN) networked together optically and acoustically. The AUV can locate the static nodes using vision and hover above the static nodes for data upload. We describe the hardware and software architecture of this underwater system, as well as experimental data. © 2006 IEEE.
Resumo:
Cell invasion involves a population of cells which are motile and proliferative. Traditional discrete models of proliferation involve agents depositing daughter agents on nearest- neighbor lattice sites. Motivated by time-lapse images of cell invasion, we propose and analyze two new discrete proliferation models in the context of an exclusion process with an undirected motility mechanism. These discrete models are related to a family of reaction- diffusion equations and can be used to make predictions over a range of scales appropriate for interpreting experimental data. The new proliferation mechanisms are biologically relevant and mathematically convenient as the continuum-discrete relationship is more robust for the new proliferation mechanisms relative to traditional approaches.
Resumo:
Acoustic emission (AE) is the phenomenon where high frequency stress waves are generated by rapid release of energy within a material by sources such as crack initiation or growth. AE technique involves recording these stress waves by means of sensors placed on the surface and subsequent analysis of the recorded signals to gather information such as the nature and location of the source. It is one of the several diagnostic techniques currently used for structural health monitoring (SHM) of civil infrastructure such as bridges. Some of its advantages include ability to provide continuous in-situ monitoring and high sensitivity to crack activity. But several challenges still exist. Due to high sampling rate required for data capture, large amount of data is generated during AE testing. This is further complicated by the presence of a number of spurious sources that can produce AE signals which can then mask desired signals. Hence, an effective data analysis strategy is needed to achieve source discrimination. This also becomes important for long term monitoring applications in order to avoid massive date overload. Analysis of frequency contents of recorded AE signals together with the use of pattern recognition algorithms are some of the advanced and promising data analysis approaches for source discrimination. This paper explores the use of various signal processing tools for analysis of experimental data, with an overall aim of finding an improved method for source identification and discrimination, with particular focus on monitoring of steel bridges.
Resumo:
A critical step in the dissemination of ovarian cancer is the formation of multicellular spheroids from cells shed from the primary tumour. The objectives of this study were to apply bioengineered three-dimensional (3D) microenvironments for culturing ovarian cancer spheroids in vitro and simultaneously to build on a mathematical model describing the growth of multicellular spheroids in these biomimetic matrices. Cancer cells derived from human epithelial ovarian carcinoma were embedded within biomimetic hydrogels of varying stiffness and grown for up to 4 weeks. Immunohistochemistry, imaging and growth analyses were used to quantify the dependence of cell proliferation and apoptosis on matrix stiffness, long-term culture and treatment with the anti-cancer drug paclitaxel. The mathematical model was formulated as a free boundary problem in which each spheroid was treated as an incompressible porous medium. The functional forms used to describe the rates of cell proliferation and apoptosis were motivated by the experimental work and predictions of the mathematical model compared with the experimental output. This work aimed to establish whether it is possible to simulate solid tumour growth on the basis of data on spheroid size, cell proliferation and cell death within these spheroids. The mathematical model predictions were in agreement with the experimental data set and simulated how the growth of cancer spheroids was influenced by mechanical and biochemical stimuli including matrix stiffness, culture duration and administration of a chemotherapeutic drug. Our computational model provides new perspectives on experimental results and has informed the design of new 3D studies of chemoresistance of multicellular cancer spheroids.
Resumo:
Standard differential equation–based models of collective cell behaviour, such as the logistic growth model, invoke a mean–field assumption which is equivalent to assuming that individuals within the population interact with each other in proportion to the average population density. Implementing such assumptions implies that the dynamics of the system are unaffected by spatial structure, such as the formation of patches or clusters within the population. Recent theoretical developments have introduced a class of models, known as moment dynamics models, which aim to account for the dynamics of individuals, pairs of individuals, triplets of individuals and so on. Such models enable us to describe the dynamics of populations with clustering, however, little progress has been made with regard to applying moment dynamics models to experimental data. Here, we report new experimental results describing the formation of a monolayer of cells using two different cell types: 3T3 fibroblast cells and MDA MB 231 breast cancer cells. Our analysis indicates that the 3T3 fibroblast cells are relatively motile and we observe that the 3T3 fibroblast monolayer forms without clustering. Alternatively, the MDA MB 231 cells are less motile and we observe that the MDA MB 231 monolayer formation is associated with significant clustering. We calibrate a moment dynamics model and a standard mean–field model to both data sets. Our results indicate that the mean–field and moment dynamics models provide similar descriptions of the 3T3 fibroblast monolayer formation whereas these two models give very different predictions for the MDA MD 231 monolayer formation. These outcomes indicate that standard mean–field models of collective cell behaviour are not always appropriate and that care ought to be exercised when implementing such a model.
Resumo:
Due to economic and demographic changes highly educated women play an important role on the Chinese labour market. Gender has been shown to be an important characteristic that influences behaviour in economic experiments, as have, to a lesser degree, academic major, age and income. We provide a study looking at trust and reciprocity and their determinants in a labour market laboratory experiment. Our experimental data is based on two games, the Gift Exchange Game (GEG) and a variant of this game (the Wage Promising Game, WPG) where the employer's wage offer is non-binding and the employer can choose the wage freely after observing the workers effort. We and that women are less trusting and reciprocal than men in the GEG while this cannot be found in the WPG. Letting participants play the GEG and the WPG, allows us to disentangle reciprocal and risk attitudes. While in the employer role, it seems to be that risk attitude is the main factor, this is not confirmed analysing decisions in the worker role.
Resumo:
Background The expansion of cell colonies is driven by a delicate balance of several mechanisms including cell motility, cell-to-cell adhesion and cell proliferation. New approaches that can be used to independently identify and quantify the role of each mechanism will help us understand how each mechanism contributes to the expansion process. Standard mathematical modelling approaches to describe such cell colony expansion typically neglect cell-to-cell adhesion, despite the fact that cell-to-cell adhesion is thought to play an important role. Results We use a combined experimental and mathematical modelling approach to determine the cell diffusivity, D, cell-to-cell adhesion strength, q, and cell proliferation rate, ?, in an expanding colony of MM127 melanoma cells. Using a circular barrier assay, we extract several types of experimental data and use a mathematical model to independently estimate D, q and ?. In our first set of experiments, we suppress cell proliferation and analyse three different types of data to estimate D and q. We find that standard types of data, such as the area enclosed by the leading edge of the expanding colony and more detailed cell density profiles throughout the expanding colony, does not provide sufficient information to uniquely identify D and q. We find that additional data relating to the degree of cell-to-cell clustering is required to provide independent estimates of q, and in turn D. In our second set of experiments, where proliferation is not suppressed, we use data describing temporal changes in cell density to determine the cell proliferation rate. In summary, we find that our experiments are best described using the range D = 161 - 243 ?m2 hour-1, q = 0.3 - 0.5 (low to moderate strength) and ? = 0.0305 - 0.0398 hour-1, and with these parameters we can accurately predict the temporal variations in the spatial extent and cell density profile throughout the expanding melanoma cell colony. Conclusions Our systematic approach to identify the cell diffusivity, cell-to-cell adhesion strength and cell proliferation rate highlights the importance of integrating multiple types of data to accurately quantify the factors influencing the spatial expansion of melanoma cell colonies.
Resumo:
Acoustic sensing is a promising approach to scaling faunal biodiversity monitoring. Scaling the analysis of audio collected by acoustic sensors is a big data problem. Standard approaches for dealing with big acoustic data include automated recognition and crowd based analysis. Automatic methods are fast at processing but hard to rigorously design, whilst manual methods are accurate but slow at processing. In particular, manual methods of acoustic data analysis are constrained by a 1:1 time relationship between the data and its analysts. This constraint is the inherent need to listen to the audio data. This paper demonstrates how the efficiency of crowd sourced sound analysis can be increased by an order of magnitude through the visual inspection of audio visualized as spectrograms. Experimental data suggests that an analysis speedup of 12× is obtainable for suitable types of acoustic analysis, given that only spectrograms are shown.
Resumo:
The present study focused on simulating a trajectory point towards the end of the first experimental heatshield of the FIRE II vehicle, at a total flight time of 1639.53s. Scale replicas were sized according to binary scaling and instrumented with thermocouples for testing in the X1 expansion tube, located at The University of Queensland. Correlation of flight to experimental data was achieved through the separation, and independent treatment of the heat modes. Preliminary investigation indicates that the absolute value of radiant surface flux is conserved between two binary scaled models, whereas convective heat transfer increases with the length scale. This difference in the scaling techniques result in the overall contribution of radiative heat transfer diminishing to less than 1% in expansion tubes from a flight value of approximately 9-17%. From empirical correlation's it has been shown that the St √Re number decreases, under special circumstances, in expansion tubes by the percentage radiation present on the flight vehicle. Results obtained in this study give a strong indication that the relative radiative heat transfer contribution in the expansion tube tests is less than that in flight, supporting the analysis that the absolute value remains constant with binary scaling.