958 resultados para Estrutura tubular mista (aço-concreto)
Resumo:
O presente estudo objetivou conhecer os padrões da composição florística e estrutural do componente arbóreo de um trecho de remanescente de Floresta Ombrófila Mista Montana em Campos Novos - SC e determinar as variáveis ambientais que influenciam estes padrões. Para isso, foi amostrado 1 ha de floresta por meio de 50 parcelas de 10 × 20 m dispostas de forma sistemática, distanciada 30 m entre si, no remanescente florestal. Dentro das parcelas foram identificados e mensurados (circunferência medida a altura do peito, CAP, e altura total) CAP, e altura total) todos os indivíduos arbóreos vivos com CAP ≥ 15,7 cm. Os dados ambientais relacionados às propriedades químicas e físicas dos solos e à topografia também foram coletados em cada parcela. Foram calculados o índice de Shannon-Wiener (H’), a equabilidade de Pielou (J’) e os estimadores fitossociológicos. A organização florístico-estrutural do fragmento foi analisada por meio de uma NMDS (Nonmetric multidimensional scalling). As variáveis ambientais foram ajustadas a posteriori à ordenaçã o produzida, sendo aquelas significativas (p < 0,05) plotadas na forma de vetores. Foram amostrados 1.027 indivíduos, que totalizaram uma área basal de 43,57 m2, distribuídos em 88 espécies e 41 famílias botânicas. A diversidade do remanescente estudado foi relativamente alta (H’=3,59) e a dominância baixa (J’=0,80). A espécie de maior VI foi Araucaria angustifolia (Bertol.) Kuntze (14,44%). A análise multivariada NMDS indicou um gradiente florístico-estrutural relacionado à cota média (altitude), saturação de bases, pH e teores de P nos solos.
Resumo:
O objetivo desse estudo foi caracterizar a composição florística e a estrutura do componente arbóreo em fragmento de Floresta Ombrófila Mista Alto-Montana e avaliar a influência do efeito de borda sobre a organização, estrutura, riqueza e diversidade de espécies. Foram alocadas 50 parcelas permanentes de 10 x 20 m, divididas em cinco transeções distanciadas, no mínimo, 100 m entre si, em um fragmento florestal, no município de Bom Jardim da Serra - SC. As árvores com circunferência ≥ 15,7 cm na altura do peito (CAP) foram mensuradas (CAP e altura total), identificadas e classificadas quanto às guildas de regeneração (pioneiras, climácicas exigentes em luz e climácicas tolerantes à sombra). Os dados foram analisados por meio dos índices de valor de importância (IVI), NMDS (Nonmetric Multidimensional Scaling), modelo aditivo generalizado e regressões lineares simples. Foram observados 1.457 indivíduos arbóreos, distribuídos em 29 famílias, 43 gêneros e 55 espécies. A espécie com maior valor de importância foi Dicksonia sellowiana Hook. Não foi observada influência do efeito de borda sobre a organização, a estrutura (diâmetro médio, altura média e densidade) da comunidade e participação relativa das guildas de regeneração. No entanto, ficaram evidenciados maiores valores de diversidade, riqueza e equabilidade nas áreas de borda. Desta forma, concluí-se que parte das variações dos valores relativos à diversidade de espécies arbóreas na Floresta Ombrófila Mista Ato-Montana foi determinada pela distância da borda.
Resumo:
Tese (doutorado)—Universidade de Brasília, Faculdade de Tecnologia, Departamento de Engenharia Civil e Ambiental, 2015.
Resumo:
Population growth experienced in major cities, allied to society s need of infra-structure, especially ones related to habitational demands, increases the consumption of construction materials. As a consequence, consumption of natural resources itself. Thus, due to this process, concrete is one of the most produced materials in civil construction. This is also due to the great diversity of its application, easiness in its execution and adequate mechanical performance, as well as low production costs. Following the same tendencies in construction development, the ceramic industry has intensified the production of porcelain ceramic tiles and floors. These are achieved by a fine finishing and receive polishing at the end of the fabrication process. This work researched the use of porcelain residues in polishing for the production of concrete. All of which; due to economical and environmental issues. This process aims to prove adequate destiny for this type of residue, due to environmental issues, incorporating it to the concrete itself; all of which provides economy in consumption of the materials that constitute concrete. Thus, the main characteristics of concrete were investigated through the inclusion of different concentration of the porcelain residue as additional trait element. The residue rates incorporated to the trait varied from 10% to 50% in relation to the cement mass, in the traits with plastic additives and without plastic additives. It is observed that the inclusion of porcelain residue produced a meaningful alteration in the consistency of fresh concrete. This residue has a fine granulometry and it considerably absorbed the water used in the concrete spreading, influencing the way this material is dealt with. Thus, the value of cement striking decreases with the increase of residues present in trait. The maximal incorporation of the residue was of 50%, massively, for the same factor water/initial cement. The use of residues in concrete results in an 40% increase in the compression resistance. It is also proportional to residue concentration of porcelain in the trait. The microstructure was also favored once porosity and concrete absorption decreases with the use of this residue. The parameters demonstrate the quality and durability of the concrete produced with this residue. The use of porcelain residue in concrete composition has not produced meaningful thermal behavior changes. Thermal conductivity, heat capacity and thermal diffusivity have been maintained basically constant
Resumo:
Dissertação de Mestrado para obtenção do grau de Mestre em Arquitectura, apresentada na Universidade de Lisboa - Faculdade de Arquitectura.
Resumo:
In this study, poly (e-caprolactone) [PCL] and its collagen composite blend (PCL=Col) were fabricated to scaffolds using electrospinning method. Incorporated collagen was present on the surface of the fibers, and it modulated the attachment and proliferation of pig bone marrow mesenchymal cells (pBMMCs). Osteogenic differentiation markers were more pronounced when these cells were cultured on PCL=Col fibrous meshes, as determined by immunohistochemistry for collagen type I, osteopontin, and osteocalcin. Matrix mineralization was observed only on osteogenically induced PCL=Col constructs. Long bone analogs were created by wrapping osteogenic cell sheets around the PCL=Col meshes to form hollow cylindrical cell-scaffold constructs. Culturing these constructs under dynamic conditions enhanced bone-like tissue formation and mechanical strength.We conclude that electrospun PCL=Col mesh is a promising material for bone engineering applications. Its combination with osteogenic cell sheets offers a novel and promising strategy for engineering of tubular bone analogs.
Resumo:
Cell-sheet techniques have been proven effective in various soft tissue engineering applications. In this experiment, we investigated the feasibility of bone tissue engineering using a hybrid of mesenchymal stem cell (MSC) sheets and PLGA meshes. Porcine MSCs were cultured to a thin layer of cell sheets via osteogenic induction. Tube-like long bones were constructed by wrapping the cell sheet on to PLGA meshes resulting in constructs which could be cultured in spinner flasks, prior to implantation in nude rats. Our results showed that the sheets were composed of viable cells and dense matrix with a thickness of about 80–120 mm, mineral deposition was also observed in the sheet. In vitro cultures demonstrated calcified cartilage-like tissue formation and most PLGA meshes were absorbed during the 8-week culture period. In vivo experiments revealed that dense mineralized tissue was formed in subcutaneous sites and the 8- week plants shared similar micro-CT characteristics with native bone. The neo tissue demonstrated histological markers for both bone and cartilage, indicating that the bone formation pathway in constructs was akin to endochondral ossification, with the residues of PLGA having an effect on the neo tissue organization and formation. These results indicate that cell-sheet approaches in combination with custom-shaped scaffolds have potential in producing bone tissue.
Resumo:
This paper examines the fouling characteristics of four tubular ceramic membranes with pore sizes 300 kDa, 0.1 μm and 0.45 μm installed in a pilot plant at a sugar factory for processing clarified cane sugar juices. All the membranes, except the one with a pore size of 0.45 μm, generally gave reproducible results through the trials, were easy to clean and could handle operation at high volumetric concentration factors. Analysis of fouled and cleaned ceramic membranes revealed that polysaccharides, lipids and to a lesser extent, polyphenols, as well as other colloidal particles cause fouling of the membranes. Electrostatic and hydrophobic forces cause strong aggregation of the polymeric components with one another and with colloidal particles. To combat irreversible fouling of the membranes, treatment options that result in the removal of particles having a size range of 0.2–0.5 μm and in addition remove polymeric impurities, need to be identified. Chemical and microscopic evaluations of the juices and the structural characterisation of individual particles and aggregates identified options to mitigate the fouling of membranes. These include conditioning the feed prior to membrane filtration to break up the network structure formed between the polymers and particles in the feed and the use of surfactants to prevent the aggregation of polymers and particles.
Resumo:
This paper describes the behaviour of very high strength (VHS) circular steel tubes strengthened by carbon fibre reinforced polymer (CFRP) and subjected to axial tension. A series of tests were conducted with different bond lengths and number of layers. The distribution of strain through the thickness of CFRP layers and along CFRP bond length was studied. The strain was found to generally decrease along the CFRP bond length far from the joint. The strain through the thickness of the CFRP layers was also found to decrease from bottom to top layer. The effective bond length for high modulus CFRP was established. Finally empirical models were developed to estimate the maximum load for a given CFRP arrangement.
Resumo:
There is a growing need for successful bone tissue engineering strategies and advanced biomaterials that mimic the structure and function of native tissues carry great promise. Successful bone repair approaches may include an osteoconductive scaffold, osteoinductive growth factors, cells with an osteogenic potential and capacity for graft vascularisation. To increase osteoinductivity of biomaterials, the local combination and delivery of growth factors has been developed. In the present study we investigated the osteogenic effects of calcium phosphate (CaP)-coated nanofiber mesh tube-mediated delivery of BMP-7 from a PRP matrix for the regeneration of critical sized segmental bone defects in a small animal model. Bilateral full-thickness diaphyseal segmental defects were created in twelve male Lewis rats and nanofiber mesh tubes were placed around the defect. Defects received either treatment with a CaP-coated nanofiber mesh tube (n = 6), an un-coated nanofiber mesh tube (n=6) a CaP-coated nanofiber mesh tube with PRP (n=6) or a CaP-coated nanofiber mesh tube in combination with 5 μg BMP-7 and PRP (n = 6). After 12 weeks, bone volume and biomechanical properties were evaluated using radiography, microCT, biomechanical testing and histology. The results demonstrated significantly higher biomechanical properties and bone volume for the BMP group compared to the control groups. These results were supported by the histological evaluations, where BMP group showed the highest rate of bone regeneration within the defect. In conclusion, BMP-7 delivery via PRP enhanced functional bone defect regeneration, and together these data support the use of BMP-7 in the treatment of critical sized defects.
Resumo:
Flexible tubular structures fabricated from solution electrospun fibers are finding increasing use in tissue engineering applications. However it is difficult to control the deposition of fibers due to the chaotic nature of the solution electrospinning jet. By using non-conductive polymer melts instead of polymer solutions the path and collection of the fiber becomes predictable. In this work we demonstrate the melt electrospinning of polycaprolactone in a direct writing mode onto a rotating cylinder. This allows the design and fabrication of tubes using 20 μm diameter fibers with controllable micropatterns and mechanical properties. A key design parameter is the fiber winding angle, where it allows control over scaffold pore morphology (e.g. size, shape, number and porosity). Furthermore, the establishment of a finite element model as a predictive design tool is validated against mechanical testing results of melt electrospun tubes to show that a lesser winding angle provides improved mechanical response to uniaxial tension and compression. In addition, we show that melt electrospun tubes support the growth of three different cell types in vitro and are therefore promising scaffolds for tissue engineering applications.
Resumo:
Cold-formed tubular sections are widely used in many modern steel structures. Two innovative cold-formed sections have been introduced to the Australian building industry. They are the 'in-line' galvanized rectangular hollow section (RHS) tubes and the hollow flange beams (HFB). They offer significant advantages but at the same time provide challenges to designers because of their special characteristics. The application, manufacturing, advantages and characteristics of these two sections are described.
Resumo:
BACKGROUND: The molecular pathogenesis of different sensitivities of the renal proximal and distal tubular cell populations to ischemic injury, including ischemia-reperfusion (IR)-induced oxidative stress, is not well-defined. An in vitro model of oxidative stress was used to compare the survival of distal [Madin-Darby canine kidney (MDCK)] and proximal [human kidney-2 (HK-2)] renal tubular epithelial cells, and to analyze for links between induced cell death and expression and localization of selected members of the Bcl-2 gene family (anti-apoptotic Bcl-2 and Bcl-X(L), pro-apoptotic Bax and Bad). METHODS: Cells were treated with 1 mmol/L hydrogen peroxide (H2O2) or were grown in control medium for 24 hours. Cell death (apoptosis) was quantitated using defined morphological criteria. DNA gel electrophoresis was used for biochemical identification. Protein expression levels and cellular localization of the selected Bcl-2 family proteins were analyzed (Western immunoblots, densitometry, immunoelectron microscopy). RESULTS: Apoptosis was minimal in control cultures and was greatest in treated proximal cell cultures (16.93 +/- 4.18% apoptosis) compared with treated distal cell cultures (2.28 +/- 0.85% apoptosis, P < 0.001). Endogenous expression of Bcl-X(L) and Bax, but not Bcl-2 or Bad, was identified in control distal cells. Bcl-X(L) and Bax had nonsignificant increases (P> 0.05) in these cells. Bcl-2, Bax, and Bcl-X(L), but not Bad, were endogenously expressed in control proximal cells. Bcl-X(L) was significantly decreased in treated proximal cultures (P < 0.05), with Bax and Bcl-2 having nonsignificant increases (P> 0.05). Immunoelectron microscopy localization indicated that control and treated but surviving proximal cells had similar cytosolic and membrane localization of the Bcl-2 proteins. In comparison, surviving cells in the treated distal cultures showed translocation of Bcl-X(L) from cytosol to the mitochondria after treatment with H2O2, a result that was confirmed using cell fractionation and analysis of Bcl-X(L) expression levels of the membrane and cytosol proteins. Bax remained distributed evenly throughout the surviving distal cells, without particular attachment to any cellular organelle. CONCLUSION: The results indicate that in this in vitro model, the increased survival of distal compared with proximal tubular cells after oxidative stress is best explained by the decreased expression of anti-apoptotic Bcl-X(L) in proximal cells, as well as translocation of Bcl-X(L) protein to mitochondria within the surviving distal cells.
Resumo:
A pro-fibrotic role of matrix metalloproteinase-9 (MMP-9) in tubular cell epithelial-mesenchymal transition (EMT) is well established in renal fibrosis; however studies from our group and others have demonstrated some previously unrecognized complexity of MMP-9 that has been overlooked in renal fibrosis. Therefore, the aim of this study was to determine the expression pattern, origin and the exact mechanism underlying the contribution of MMP-9 to unilateral ureteral obstruction (UUO), a well-established model of renal fibrosis via MMP-9 inhibition. Renal MMP-9 expression in BALB/c mice with UUO was examined on day 1, 3, 5, 7, 9, 11 and 14. To inhibit MMP-9 activity, MMP-2/9 inhibitor or MMP-9-neutralizing antibody was administered daily for 4 consecutive days from day 0-3, 6-9 or 10-13 and tissues harvested at day 14. In UUO, there was a bi-phasic early- and late-stage upregulation of MMP-9 activity. Interestingly, tubular epithelial cells (TECs) were the predominant source of MMP-9 during early stage, whereas TECs, macrophages and myofibroblasts produced MMP-9 during late-stage UUO. Early- and late-stage inhibition of MMP-9 in UUO mice significantly reduced tubular cell EMT and renal fibrosis. Moreover, MMP-9 inhibition caused a significant reduction in MMP-9-cleaved osteopontin and macrophage infiltration in UUO kidney. Our in vitro study showed MMP-9-cleaved osteopontin enhanced macrophage transwell migration and MMP-9 of both primary TEC and macrophage induced tubular cell EMT. In summary, our result suggests that MMP-9 of both TEC and macrophage origin may directly or indirectly contribute to the pathogenesis of renal fibrosis via osteopontin cleavage, which, in turn further recruit macrophage and induce tubular cell EMT. Our study also highlights the time dependency of its expression and the potential of stage-specific inhibition strategy against renal fibrosis.