999 resultados para Erosión susceptibility


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ankylosing spondylitis (AS) is a common inflammatory arthritis predominantly affecting the axial skeleton. Susceptibility to the disease is thought to be oligogenic. To identify the genes involved, we have performed a genomewide scan in 185 families containing 255 affected sibling pairs. Two-point and multipoint nonparametric linkage analysis was performed. Regions were identified showing "suggestive" or stronger linkage with the disease on chromosomes 1p, 2q, 6p, 9q, 10q, 16q, and 19q. The MHC locus was identified as encoding the greatest component of susceptibility, with an overall LOD score of 15.6. The strongest non-MHC linkage lies on chromosome 16q (overall LOD score 4.7). These results strongly support the presence of non-MHC genetic-susceptibility factors in AS and point to their likely locations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, 1,833 systemic sclerosis (SSc) cases and 3,466 controls were genotyped with the Immunochip array. Classical alleles, amino acid residues, and SNPs across the human leukocyte antigen (HLA) region were imputed and tested. These analyses resulted in a model composed of six polymorphic amino acid positions and seven SNPs that explained the observed significant associations in the region. In addition, a replication step comprising 4,017 SSc cases and 5,935 controls was carried out for several selected non-HLA variants, reaching a total of 5,850 cases and 9,401 controls of European ancestry. Following this strategy, we identified and validated three SSc risk loci, including DNASE1L3 at 3p14, the SCHIP1-IL12A locus at 3q25, and ATG5 at 6q21, as well as a suggested association of the TREH-DDX6 locus at 11q23. The associations of several previously reported SSc risk loci were validated and further refined, and the observed peak of association in PXK was related to DNASE1L3. Our study has increased the number of known genetic associations with SSc, provided further insight into the pleiotropic effects of shared autoimmune risk factors, and highlighted the power of dense mapping for detecting previously overlooked susceptibility loci.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ankylosing spondylitis (AS) is a common and highly heritable inflammatory arthropathy. Although the gene HLA-B27 is almost essential for the inheritance of the condition, it alone is not sufficient to explain the pattern of familial recurrence of the disease. We have previously demonstrated suggestive linkage of AS to chromosome 2q13, a region containing the interleukin 1 (IL-1) family gene cluster, which includes several strong candidates for involvement in the disease. In the current study, we describe strong association and transmission of IL-1 family gene cluster single-nucleotide polymorphisms and haplotypes with AS.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objectives - It has long been suspected that susceptibility to ankylosing spondylitis (AS) is influenced by genes lying distant to the major histocompatibility complex. This study compares genetic models of AS to assess the most likely mode of inheritance, using recurrence risk ratios in relatives of affected subjects. Methods - Recurrence risk ratios in different degrees of relatives were determined using published data from studies specifically designed to address the question. The methods of Risch were used to determine the expected recurrence risk ratios in different degrees of relatives, assuming equal first degree relative recurrence risk between models. Goodness of fit was determined by χ2 comparison of the expected number of affected subjects with the observed number, given equal numbers of each type of relative studied. Results - The recurrence risks in different degrees of relatives were: monozygotic (MZ) twins 63% (17/27), first degree relatives 8.2% (441/5390), second degree relatives 1.0% (8/834), and third degree relatives 0.7% (7/997). Parent-child recurrence risk (7.9%, 37/466) was not significantly different from the sibling recurrence risk (8.2%, 404/4924), excluding a significant dominance genetic component to susceptibility. Poor fitting models included single gene, genetic heterogeneity, additive, two locus multiplicative, and one locus and residual polygenes (χ2 > 32 (two degrees of freedom), p < 10-6 for all models). The best fitting model studied was a five locus model with multiplicative interaction between loci (χ2 = 1.4 (two degrees of freedom), p = 0.5). Oligogenic multiplicative models were the best fitting over a range of population prevalences and first degree recurrence risk rates. Conclusions - This study suggests that of the genetic models tested, the most likely model operating in AS is an oligogenic model with predominantly multiplicative interaction between loci.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective. To analyze the effect of HLA-DR genes on susceptibility to and severity of ankylosing spondylitis (AS). Methods. Three hundred sixty- three white British AS patients were studied; 149 were carefully assessed for a range of clinical manifestations, and disease severity was assessed using a structured questionnaire. Limited HLA class I typing and complete HLA-DR typing were performed using DNA-based methods. HLA data from 13,634 healthy white British bone marrow donors were used for comparison. Results. A significant association between DR1 and AS was found, independent of HLA-B27 (overall odds ratio [OR] 1.4, 95% confidence interval [95% CI] 1.1-1.8, P = 0.02; relative risk [RR] 2.7, 95% CI 1.5-4.8, P = 6 x 10-4 among homozygotes; RR 2.1, 95% CI 1.5-2.8, P = 5 x 10-6 among heterozygotes). A large but weakly significant association between DR8 and AS was noted, particularly among DR8 homozygotes (RR 6.8, 95% CI 1.6-29.2, P = 0.01 among homozygotes; RR 1.6, 95% CI 1.0-2.7, P = 0.07 among heterozygotes). A negative association with DR12 (OR 0.22, 95% CI 0.09-0.5, P = 0.001) was noted. HLA-DR7 was associated with younger age at onset of disease (mean age at onset 18 years for DR7-positive patients and 23 years for DR7-negative patients; Z score 3.21, P = 0.001). No other HLA class I or class H associations with disease severity or with different clinical manifestations of AS were found. Conclusion. The results of this study suggest that HLA-DR genes may have a weak effect on susceptibility to AS independent of HLA-B27, but do not support suggestions that they affect disease severity or different clinical manifestations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective To determine the relative effects of genetic and environmental factors in susceptibility to ankylosing spondylitis (AS). Methods Twins with AS were identified from the Royal National Hospital for Rheumatic Diseases database. Clinical and radiographic examinations were performed to establish diagnoses, and disease severity was assessed using a combination of validated scoring systems. HLA typing for HLA-B27, HLA-B60, and HLA-DR1 was performed by polymerase chain reaction with sequence- specific primers, and zygosity was assessed using microsatellite markers. Genetic and environmental variance components were assessed with the program Mx, using data from this and previous studies of twins with AS. Results Six of 8 monozygotic (MZ) twin pairs were disease concordant, compared with 4 of 15 B27-positive dizygotic (DZ) twin pairs (27%) and 4 of 32 DZ twin pairs overall (12.5%). Nonsignificant increases in similarity with regard to age at disease onset and all of the disease severity scores assessed were noted in disease-concordant MZ twins compared with concordant DZ twins. HLA-B27 and B60 were associated with the disease in probands, and the rate of disease concordance was significantly increased among DZ twin pairs in which the co- twin was positive for both B27 and DR1. Additive genetic effects were estimated to contribute 97% of the population variance. Conclusion Susceptibility to AS is largely genetically determined, and the environmental trigger for the disease is probably ubiquitous. HLA-B27 accounts for a minority of the overall genetic susceptibility to AS.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective. To localize the regions containing genes that determine susceptibility to ankylosing spondylitis (AS). Methods. One hundred five white British families with 121 affected sibling pairs with AS were recruited, largely from the Royal National Hospital for Rheumatic Diseases AS database. A genome-wide linkage screen was undertaken using 254 highly polymorphic microsatellite markers from the Medical Research Council (UK) (MRC) set. The major histocompatibility complex (MHC) region was studied more intensively using 5 microsatellites lying within the HLA class III region and HLA-DRB1 typing. The Analyze package was used for 2-point analysis, and GeneHunter for multipoint analysis. Results. When only the MRC set was considered, 11 markers in 7 regions achieved a P value of ≤0.01. The maximum logarithm of odds score obtained was 3.8 (P = 1.4 x 10-5) using marker D6S273, which lies in the HLA class III region. A further marker used in mapping of the MHC class III region achieved a LOD score of 8.1 (P = 1 x 10-9). Nine of 118 affected sibling pairs (7.6%) did not share parental haplotypes identical by descent across the MHC, suggesting that only 31% of the susceptibility to AS is coded by genes linked to the MHC. The maximum non-MHC LOD score obtained was 2.6 (P = 0.0003) for marker D16S422. Conclusion. The results of this study confirm the strong linkage of the MHC with AS, and provide suggestive evidence regarding the presence and location of non-MHC genes influencing susceptibility to the disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective. Ankylosing spondylitis (AS) affects 0.25-1.0% of the population, and its etiology is incompletely understood. Susceptibility to this highly familial disease (λ(s) = 58) is primarily genetically determined. There is a significant sex bias in AS, and there are differences in recurrence risk to the offspring of affected mothers and fathers, suggesting that there may be an X-linked recessive effect. We undertook an X- chromosome linkage study to determine any contribution of the X-chromosome to AS susceptibility. Methods. A linkage study of the X-chromosome using 234 affected sibling pairs was performed to investigate this hypothesis. Results. No linkage of the X-chromosome with susceptibility to AS was found. Model- free multipoint linkage analysis strongly excluded any significant genetic contribution (λ ≥1.5) to AS susceptibility encoded on the X-chromosome (logarithm of odds [LOD] <-2.0). Smaller genetic effects (A ≥1.3) were also found to be unlikely (LOD <-1.0). Conclusion. The sex bias in AS is not explained by X-chromosome-encoded genetic effects. The disease model best explaining the sex bias in occurrence and transmission of AS is a polygenic model with a higher susceptibility threshold in females.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective. To undertake a systematic wholegenome screen to identify regions exhibiting genetic linkage to rheumatoid arthritis (RA). Methods. Two hundred fifty-two RA-affected sibling pairs from 182 UK families were genotyped using 365 highly informative microsatellite markers. Microsatellite genotyping was performed using fluorescent polymerase chain reaction primers and semiautomated DNA sequencing technology. Linkage analysis was undertaken using MAPMAKER/SIBS for single-point and multipoint analysis. Results. Significant linkage (maximum logarithm of odds score 4.7 [P = 0.000003] at marker D6S276, 1 cM from HLA-DRB1) was identified around the major histocompatibility complex (MHC) region on chromosome 6. Suggestive linkage (P < 7.4 × 10-4) was identified on chromosome 6q by single- and multipoint analysis. Ten other sites of nominal linkage (P < 0.05) were identified on chromosomes 3p, 4q, 7p, 2 regions of 10q, 2 regions of 14q, 16p, 21q, and Xq by single-point analysis and on 3 sites (1q, 14q, and 14q) by multipoint analysis. Conclusion. Linkage to the MHC region was confirmed. Eleven non-HLA regions demonstrated evidence of suggestive or nominal linkage, but none reached the genome-wide threshold for significant linkage (P = 2.2 × 10-5). Results of previous genome screens have suggested that 6 of these regions may be involved in RA susceptibility.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective. HLA-DRB1, a major genetic determinant of susceptibility to rheumatoid arthritis (RA), is located within 1,000 kb of the gene encoding tumor necrosis factor (TNF). Because certain HLA-DRB1*04 subtypes increase susceptibility to RA, investigation of the role of the TNF gene is complicated by linkage disequilibrium (LD) between TNF and DRB1 alleles. By adequately controlling for this LD, we aimed to investigate the presence of additional major histocompatibility complex (MHC) susceptibility genes. Methods. We identified 274 HLA-DRB1*04-positive cases of RA and 271 HLA-DRB1*04-positive population controls. Each subject was typed for 6 single-nucleotide polymorphisms within a 4.5-kb region encompassing TNF and lymphotoxin a (LTA). LTA-TNF haplotypes in these unrelated individuals were determined using a combination of family data and the PHASE software program. Results. Significant differences in LTA-TNF haplotype frequencies were observed between different subtypes of HLA-DRB1*04. The LTA-TNF haplotypes observed were very restricted, with only 4 haplotypes constituting 81% of all haplotypes present. Among individuals carrying DRB1*0401, the LTA-TNF 2 haplotype was significantly underrepresented in cases compared with controls (odds ratio 0.5 [95% confidence interval 0.3-0.8], P = 0.007), while in those with DRB1*0404, the opposite effect was observed (P = 0.007). Conclusion. These findings suggest that the MHC contains genetic elements outside the LTA-TNF region that modify the effect of HLA-DRB1 on susceptibility to RA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective Several genetic risk variants for ankylosing spondylitis (AS) have been identified in genome-wide association studies. Our objective was to examine whether familial AS cases have a higher genetic load of these susceptibility variants. Methods Overall, 502 AS patients were examined, consisting of 312 patients who had first-degree relatives (FDRs) with AS (familial) and 190 patients who had no FDRs with AS or spondylarthritis (sporadic). All patients and affected FDRs fulfilled the modified New York criteria for AS. The patients were recruited from 2 US cohorts (the North American Spondylitis Consortium and the Prospective Study of Outcomes in Ankylosing Spondylitis) and from the UK-Oxford cohort. The frequencies of AS susceptibility loci in IL-23R, IL1R2, ANTXR2, ERAP-1, 2 intergenic regions on chromosomes 2p15 and 21q22, and HLA-B27 status as determined by the tag single-nucleotide polymorphism (SNP) rs4349859 were compared between familial and sporadic cases of AS. Association between SNPs and multiplex status was assessed by logistic regression controlling for sibship size. Results HLA-B27 was significantly more prevalent in familial than sporadic cases of AS (odds ratio 4.44 [95% confidence interval 2.06, 9.55], P = 0.0001). Furthermore, the AS risk allele at chromosome 21q22 intergenic region showed a trend toward higher frequency in the multiplex cases (P = 0.08). The frequency of the other AS risk variants did not differ significantly between familial and sporadic cases, either individually or combined. Conclusion HLA-B27 is more prevalent in familial than sporadic cases of AS, demonstrating higher familial aggregation of AS in patients with HLA-B27 positivity. The frequency of the recently described non-major histocompatibility complex susceptibility loci is not markedly different between the sporadic and familial cases of AS.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The role of germline polymorphisms of the T-cell receptor A/D and B loci in susceptibility to ankylosing spondylitis was investigated by linkage studies using microsatellite markers in 215 affected sibling pairs. The presence of a significant susceptibility gene (lambda ≤ 1.6) at the TCRA/D locus was excluded (LOD score < -2.0). At the TCRB locus, there was weak evidence of the presence of a susceptibility gene (P = 0.01, LOD score 1.1). Further family studies will be required to determine whether this is a true or false-positive finding. It is unlikely that either the TCRA/D or TCRB loci contain genes responsible for more than a moderate proportion of the non-MHC genetic susceptibility to ankylosing spondylitis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ankylosing spondylitis is a highly heritable, common rheumatic condition, primarily affecting the axial skeleton. The association with HLA-B27 has been demonstrated worldwide, and evidence for a role of HLA-B27 in disease comes from linkage and association studies in humans, and transgenic animal models. However, twin studies indicate that HLA-B27 contributes only 16% of the total genetic risk for disease. Furthermore, there is compelling evidence that non-B27 genes, both within and outwith the major histocompatability complex, are involved in disease aetiology. In this post-genomic era we have the tools to help elicit the genetic basis of disease. This review describes methods for genetic investigation of ankylosing spondylitis, and summarises the status of current research in this exciting area.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

While twin studies have previously demonstrated high heritability of susceptibility to ankylosing spondylitis (AS), it is only recently that the involvement of genetic factors in determining the severity of the disease has been demonstrated. The genes involved in determining the rate of ankylosis in AS are likely to be different from those involved in the underlying immunologic events, and represent important potential targets for treatment of AS. This article will describe the progress that has been made in the genetic epidemiology of AS, and in identifying the genes involved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study examines a matrix of synthetic water samples designed to include conditions that favour brominated disinfection by-product (Br-DBP) formation, in order to provide predictive models suitable for high Br-DBP forming waters such as salinity-impacted waters. Br-DBPs are known to be more toxic than their chlorinated analogues, in general, and their formation may be favoured by routine water treatment practices such as coagulation/flocculation under specific conditions; therefore, circumstances surrounding their formation must be understood. The chosen factors were bromide concentration, mineral alkalinity, bromide to dissolved organic carbon (Br/DOC) ratio and Suwannee River natural organic matter concentration. The relationships between these parameters and DBP formation were evaluated by response surface modelling of data generated using a face-centred central composite experimental design. Predictive models for ten brominated and/or chlorinated DBPs are presented, as well as models for total trihalomethanes (tTHMs) and total dihaloacetonitriles (tDHANs), and bromide substitution factors for the THMs and DHANs classes. The relationships described revealed that increasing alkalinity and increasing Br/DOC ratio were associated with increasing bromination of THMs and DHANs, suggesting that DOC lowering treatment methods that do not also remove bromide such as enhanced coagulation may create optimal conditions for Br-DBP formation in waters in which bromide is present.