908 resultados para Environmental objective function
Resumo:
Recent work on optimal monetary and fiscal policy in New Keynesian models suggests that it is optimal to allow steady-state debt to follow a random walk. Leith and Wren-Lewis (2012) consider the nature of the timeinconsistency involved in such a policy and its implication for discretionary policy-making. We show that governments are tempted, given inflationary expectations, to utilize their monetary and fiscal instruments in the initial period to change the ultimate debt burden they need to service. We demonstrate that this temptation is only eliminated if following shocks, the new steady-state debt is equal to the original (efficient) debt level even though there is no explicit debt target in the government’s objective function. Analytically and in a series of numerical simulations we show which instrument is used to stabilize the debt depends crucially on the degree of nominal inertia and the size of the debt-stock. We also show that the welfare consequences of introducing debt are negligible for precommitment policies, but can be significant for discretionary policy. Finally, we assess the credibility of commitment policy by considering a quasi-commitment policy which allows for different probabilities of reneging on past promises. This on-line Appendix extends the results of this paper.
Resumo:
Recent work on optimal monetary and fiscal policy in New Keynesian models suggests that it is optimal to allow steady-state debt to follow a random walk. Leith and Wren-Lewis (2012) consider the nature of the timeinconsistency involved in such a policy and its implication for discretionary policy-making. We show that governments are tempted, given inflationary expectations, to utilize their monetary and fiscal instruments in the initial period to change the ultimate debt burden they need to service. We demonstrate that this temptation is only eliminated if following shocks, the new steady-state debt is equal to the original (efficient) debt level even though there is no explicit debt target in the government’s objective function. Analytically and in a series of numerical simulations we show which instrument is used to stabilize the debt depends crucially on the degree of nominal inertia and the size of the debt-stock. We also show that the welfare consequences of introducing debt are negligible for precommitment policies, but can be significant for discretionary policy. Finally, we assess the credibility of commitment policy by considering a quasi-commitment policy which allows for different probabilities of reneging on past promises. This on-line Appendix extends the results of this paper.
Resumo:
Individual-as-maximizing agent analogies result in a simple understanding of the functioning of the biological world. Identifying the conditions under which individuals can be regarded as fitness maximizing agents is thus of considerable interest to biologists. Here, we compare different concepts of fitness maximization, and discuss within a single framework the relationship between Hamilton's (J Theor Biol 7: 1-16, 1964) model of social interactions, Grafen's (J Evol Biol 20: 1243-1254, 2007a) formal Darwinism project, and the idea of evolutionary stable strategies. We distinguish cases where phenotypic effects are additive separable or not, the latter not being covered by Grafen's analysis. In both cases it is possible to define a maximand, in the form of an objective function phi(z), whose argument is the phenotype of an individual and whose derivative is proportional to Hamilton's inclusive fitness effect. However, this maximand can be identified with the expression for fecundity or fitness only in the case of additive separable phenotypic effects, making individual-as-maximizing agent analogies unattractive (although formally correct) under general situations of social interactions. We also feel that there is an inconsistency in Grafen's characterization of the solution of his maximization program by use of inclusive fitness arguments. His results are in conflict with those on evolutionary stable strategies obtained by applying inclusive fitness theory, and can be repaired only by changing the definition of the problem.
Resumo:
Black-box optimization problems (BBOP) are de ned as those optimization problems in which the objective function does not have an algebraic expression, but it is the output of a system (usually a computer program). This paper is focussed on BBOPs that arise in the eld of insurance, and more speci cally in reinsurance problems. In this area, the complexity of the models and assumptions considered to de ne the reinsurance rules and conditions produces hard black-box optimization problems, that must be solved in order to obtain the optimal output of the reinsurance. The application of traditional optimization approaches is not possible in BBOP, so new computational paradigms must be applied to solve these problems. In this paper we show the performance of two evolutionary-based techniques (Evolutionary Programming and Particle Swarm Optimization). We provide an analysis in three BBOP in reinsurance, where the evolutionary-based approaches exhibit an excellent behaviour, nding the optimal solution within a fraction of the computational cost used by inspection or enumeration methods.
Resumo:
A Investigação Operacional vem demonstrando ser uma valiosa ferramenta de gestão nos dias de hoje em que se vive num mercado cada vez mais competitivo. Através da Programação Linear pode-se reproduzir matematicamente um problema de maximização dos resultados ou minimização dos custos de produção com o propósito de auxiliar os gestores na tomada de decisão. A Programação Linear é um método matemático em que a função objectivo e as restrições assumem características lineares, com diversas aplicações no controlo de gestão, envolvendo normalmente problemas de utilização dos recursos disponíveis sujeitos a limitações impostas pelo processo produtivo ou pelo mercado. O objectivo geral deste trabalho é o de propor um modelo de Programação Linear para a programação ou produção e alocação de recursos necessários. Optimizar uma quantidade física designada função objectivo, tendo em conta um conjunto de condicionalismos endógenas às actividades em gestão. O objectivo crucial é dispor um modelo de apoio à gestão contribuindo assim para afectação eficiente de recursos escassos à disposição da unidade económica. Com o trabalho desenvolvido ficou patente a importância da abordagem quantitativa como recurso imprescindível de apoio ao processo de decisão. The operational research has proven to be a valuable management tool today we live in an increasingly competitive market. Through Linear Programming can be mathematically reproduce a problem of maximizing performance or minimizing production costs in order to assist managers in decision making. The Linear Programming is a mathematical method in which the objective function and constraints are linear features, with several applications in the control of management, usually involving problems of resource use are available subject to limitations imposed by the production process or the market. The overall objective of this work is to propose a Linear Programming model for scheduling or production and allocation of necessary resources. Optimizing a physical quantity called the objective function, given a set of endogenous constraints on management thus contributing to efficient allocation of scarce resources available to the economic unit. With the work has demonstrated the importance of the quantitative approach as essential resource to support the decision process.
Resumo:
We investigate identifiability issues in DSGE models and their consequences for parameter estimation and model evaluation when the objective function measures the distance between estimated and model impulse responses. We show that observational equivalence, partial and weak identification problems are widespread, that they lead to biased estimates, unreliable t-statistics and may induce investigators to select false models. We examine whether different objective functions affect identification and study how small samples interact with parameters and shock identification. We provide diagnostics and tests to detect identification failures and apply them to a state-of-the-art model.
Resumo:
El trabajo es una análisis territorial del problema de la accesibilidad a la vivienda en España. El ámbito de estudio son las Comunidades Autónomas (CCAA) y el objetivo es evaluar qué CCAA gozan de mejores condiciones de accesibilidad a la vivienda en propiedad. Para alcanzar tal objetivo se trabaja con cuatro grupos de variables: variables relacionadas con la oferta de viviendas, variables relacionadas con los precios de la vivienda, variables relacionadas con la política de la vivienda y variables relacionadas con las características y equipamiento de la vivienda. La metodología aplicada cae dentro de la programación multicriterio. Esta técnica ha sido elegida porque permite incluir en la función objetivo todas las variables consideradas relevantes e ir desgranando qué CCAA optimizan los criterios marcados de accesibilidad.
Resumo:
Diplomityössä esitetään menetelmä populaation monimuotoisuuden mittaamiseen liukulukukoodatuissa evoluutioalgoritmeissa, ja tarkastellaan kokeellisesti sen toimintaa. Evoluutioalgoritmit ovat populaatiopohjaisia menetelmiä, joilla pyritään ratkaisemaan optimointiongelmia. Evoluutioalgoritmeissa populaation monimuotoisuuden hallinta on välttämätöntä, jotta suoritettu haku olisi riittävän luotettavaa ja toisaalta riittävän nopeaa. Monimuotoisuuden mittaaminen on erityisen tarpeellista tutkittaessa evoluutioalgoritmien dynaamista käyttäytymistä. Työssä tarkastellaan haku- ja tavoitefunktioavaruuden monimuotoisuuden mittaamista. Toistaiseksi ei ole ollut olemassa täysin tyydyttäviä monimuotoisuuden mittareita, ja työn tavoitteena on kehittää yleiskäyttöinen menetelmä liukulukukoodattujen evoluutioalgoritmien suhteellisen ja absoluuttisen monimuotoisuuden mittaamiseen hakuavaruudessa. Kehitettyjen mittareiden toimintaa ja käyttökelpoisuutta tarkastellaan kokeellisesti ratkaisemalla optimointiongelmia differentiaalievoluutioalgoritmilla. Toteutettujen mittareiden toiminta perustuu keskihajontojen laskemiseen populaatiosta. Keskihajonnoille suoritetaan skaalaus, joko alkupopulaation tai nykyisen populaation suhteen, riippuen lasketaanko absoluuttista vai suhteellista monimuotoisuutta. Kokeellisessa tarkastelussa havaittiin kehitetyt mittarit toimiviksi ja käyttökelpoisiksi. Tavoitefunktion venyttäminen koordinaattiakseleiden suunnassa ei vaikuta mittarin toimintaan. Myöskään tavoitefunktion kiertäminen koordinaatistossa ei vaikuta mittareiden tuloksiin. Esitetyn menetelmän aikakompleksisuus riippuu lineaarisesti populaation koosta, ja mittarin toiminta on siten nopeaa suuriakin populaatioita käytettäessä. Suhteellinen monimuotoisuus antaa vertailukelpoisia tuloksia riippumatta parametrien lukumäärästä tai populaation koosta.
Resumo:
The threats caused by global warming motivate different stake holders to deal with and control them. This Master's thesis focuses on analyzing carbon trade permits in optimization framework. The studied model determines optimal emission and uncertainty levels which minimize the total cost. Research questions are formulated and answered by using different optimization tools. The model is developed and calibrated by using available consistent data in the area of carbon emission technology and control. Data and some basic modeling assumptions were extracted from reports and existing literatures. The data collected from the countries in the Kyoto treaty are used to estimate the cost functions. Theory and methods of constrained optimization are briefly presented. A two-level optimization problem (individual and between the parties) is analyzed by using several optimization methods. The combined cost optimization between the parties leads into multivariate model and calls for advanced techniques. Lagrangian, Sequential Quadratic Programming and Differential Evolution (DE) algorithm are referred to. The role of inherent measurement uncertainty in the monitoring of emissions is discussed. We briefly investigate an approach where emission uncertainty would be described in stochastic framework. MATLAB software has been used to provide visualizations including the relationship between decision variables and objective function values. Interpretations in the context of carbon trading were briefly presented. Suggestions for future work are given in stochastic modeling, emission trading and coupled analysis of energy prices and carbon permits.
Resumo:
In this study is presented an economic optimization method to design telescope irrigation laterals (multidiameter) with regular spaced outlets. The proposed analytical hydraulic solution was validated by means of a pipeline composed of three different diameters. The minimum acquisition cost of the telescope pipeline was determined by an ideal arrangement of lengths and respective diameters for each one of the three segments. The mathematical optimization method based on the Lagrange multipliers provides a strategy for finding the maximum or minimum of a function subject to certain constraints. In this case, the objective function describes the acquisition cost of pipes, and the constraints are determined from hydraulic parameters as length of irrigation laterals and total head loss permitted. The developed analytical solution provides the ideal combination of each pipe segment length and respective diameter, resulting in a decreased of the acquisition cost.
Resumo:
Tässä diplomityössä määritellään biopolttoainetta käyttävän voimalaitoksen käytönaikainen tuotannon optimointimenetelmä. Määrittelytyö liittyy MW Powerin MultiPower CHP –voimalaitoskonseptin jatkokehitysprojektiin. Erilaisten olemassa olevien optimointitapojen joukosta valitaan tarkoitukseen sopiva, laitosmalliin ja kustannusfunktioon perustuva menetelmä, jonka tulokset viedään automaatiojärjestelmään PID-säätimien asetusarvojen muodossa. Prosessin mittaustulosten avulla lasketaan laitoksen energia- ja massataseet, joiden tuloksia käytetään seuraavan optimointihetken lähtötietoina. Optimoinnin kohdefunktio on kustannusfunktio, jonka termit ovat voimalaitoksen käytöstä aiheutuvia tuottoja ja kustannuksia. Prosessia optimoidaan säätimille annetut raja-arvot huomioiden niin, että kokonaiskate maksimoituu. Kun laitokselle kertyy käyttöikää ja historiadataa, voidaan prosessin optimointia nopeuttaa hakemalla tilastollisesti historiadatasta nykytilanteen olosuhteita vastaava hetki. Kyseisen historian hetken katetta verrataan kustannusfunktion optimoinnista saatuun katteeseen. Paremman katteen antavan menetelmän laskemat asetusarvot otetaan käyttöön prosessin ohjausta varten. Mikäli kustannusfunktion laskenta eikä historiadatan perusteella tehty haku anna paranevaa katetta, niiden laskemia asetusarvoja ei oteta käyttöön. Sen sijaan optimia aletaan hakea deterministisellä optimointialgoritmilla, joka hakee nykyhetken ympäristöstä paremman katteen antavia säätimien asetusarvoja. Säätöjärjestelmä on mahdollista toteuttaa myös tulevaisuutta ennustavana. Työn käytännön osuudessa voimalaitosmalli luodaan kahden eri mallinnusohjelman avulla, joista toisella kuvataan kattilan ja toisella voimalaitosprosessin toimintaa. Mallinnuksen tuloksena saatuja prosessiarvoja hyödynnetään lähtötietoina käyttökatteen laskennassa. Kate lasketaan kustannusfunktion perusteella. Tuotoista suurimmat liittyvät sähkön ja lämmön myyntiin sekä tuotantotukeen, ja suurimmat kustannukset liittyvät investoinnin takaisinmaksuun ja polttoaineen ostoon. Kustannusfunktiolle tehdään herkkyystarkastelu, jossa seurataan katteen muutosta prosessin teknisiä arvoja muutettaessa. Tuloksia vertaillaan referenssivoimalaitoksella suoritettujen verifiointimittausten tuloksiin, ja havaitaan, että tulokset eivät ole täysin yhteneviä. Erot johtuvat sekä mallinnuksen puutteista että mittausten lyhyehköistä tarkasteluajoista. Automatisoidun optimointijärjestelmän käytännön toteutusta alustetaan määrittelemällä käyttöön otettava optimointitapa, siihen liittyvät säätöpiirit ja tarvittavat lähtötiedot. Projektia tullaan jatkamaan järjestelmän ohjelmoinnilla, testauksella ja virityksellä todellisessa voimalaitosympäristössä ja myöhemmin ennustavan säädön toteuttamisella.
Resumo:
This work presents a formulation of the contact with friction between elastic bodies. This is a non linear problem due to unilateral constraints (inter-penetration of bodies) and friction. The solution of this problem can be found using optimization concepts, modelling the problem as a constrained minimization problem. The Finite Element Method is used to construct approximation spaces. The minimization problem has the total potential energy of the elastic bodies as the objective function, the non-inter-penetration conditions are represented by inequality constraints, and equality constraints are used to deal with the friction. Due to the presence of two friction conditions (stick and slip), specific equality constraints are present or not according to the current condition. Since the Coulomb friction condition depends on the normal and tangential contact stresses related to the constraints of the problem, it is devised a conditional dependent constrained minimization problem. An Augmented Lagrangian Method for constrained minimization is employed to solve this problem. This method, when applied to a contact problem, presents Lagrange Multipliers which have the physical meaning of contact forces. This fact allows to check the friction condition at each iteration. These concepts make possible to devise a computational scheme which lead to good numerical results.
Characterizing Dynamic Optimization Benchmarks for the Comparison of Multi-Modal Tracking Algorithms
Resumo:
Population-based metaheuristics, such as particle swarm optimization (PSO), have been employed to solve many real-world optimization problems. Although it is of- ten sufficient to find a single solution to these problems, there does exist those cases where identifying multiple, diverse solutions can be beneficial or even required. Some of these problems are further complicated by a change in their objective function over time. This type of optimization is referred to as dynamic, multi-modal optimization. Algorithms which exploit multiple optima in a search space are identified as niching algorithms. Although numerous dynamic, niching algorithms have been developed, their performance is often measured solely on their ability to find a single, global optimum. Furthermore, the comparisons often use synthetic benchmarks whose landscape characteristics are generally limited and unknown. This thesis provides a landscape analysis of the dynamic benchmark functions commonly developed for multi-modal optimization. The benchmark analysis results reveal that the mechanisms responsible for dynamism in the current dynamic bench- marks do not significantly affect landscape features, thus suggesting a lack of representation for problems whose landscape features vary over time. This analysis is used in a comparison of current niching algorithms to identify the effects that specific landscape features have on niching performance. Two performance metrics are proposed to measure both the scalability and accuracy of the niching algorithms. The algorithm comparison results demonstrate the algorithms best suited for a variety of dynamic environments. This comparison also examines each of the algorithms in terms of their niching behaviours and analyzing the range and trade-off between scalability and accuracy when tuning the algorithms respective parameters. These results contribute to the understanding of current niching techniques as well as the problem features that ultimately dictate their success.
Resumo:
We investigate the conditions under which an inequality averse and additively separable welfarist constitution maker would always choose to set up a progressive equalization payments scheme in a federation with local public goods. A progressive equalization payments scheme is defined as a list of per capita net (possibly negative) subsidies - one such net subsidy for every jurisdiction - that are decreasing with respect to jurisdictions per capita wealth. We examine these questions in a setting in which the case for progressivity is a priori the strongest, namely, all citizens have the same utility function for the private and the public goods, inhabitants of a given jurisdiction are all identical, and they are not able to move across jurisdictions. We show that the constitution maker favors a progressive equalization payments scheme for all distributions of wealth and all population sizes if and only if its objective function is additively separable between each jurisdiction’s per capita wealth and number of inhabitants. When interpreted as a mean of order r social welfare function, this condition is shown to be equivalent to additive separability of the individual’s indirect utility function with respect to wealth and the price of the public good. Some implications of this restriction to the case where the individual’s direct utility function is additively separable are also derived.
Resumo:
When triangulating a belief network we aim to obtain a junction tree of minimum state space. Searching for the optimal triangulation can be cast as a search over all the permutations of the network's vaeriables. Our approach is to embed the discrete set of permutations in a convex continuous domain D. By suitably extending the cost function over D and solving the continous nonlinear optimization task we hope to obtain a good triangulation with respect to the aformentioned cost. In this paper we introduce an upper bound to the total junction tree weight as the cost function. The appropriatedness of this choice is discussed and explored by simulations. Then we present two ways of embedding the new objective function into continuous domains and show that they perform well compared to the best known heuristic.