995 resultados para Emission permits auctionsj double auctions.


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract Background The treatment for the eradication of Helicobacter pylori (H. pylori) is complex; full effectiveness is rarely achieved and it has many adverse effects. In developing countries, increased resistance to antibiotics and its cost make eradication more difficult. Probiotics can reduce adverse effects and improve the infection treatment efficacy. If the first-line therapy fails a second-line treatment using tetracycline, furazolidone and proton-pump inhibitors has been effective and low cost in Brazil; however it implies in a lot of adverse effects. The aim of this study was to minimize the adverse effects and increase the eradication rate applying the association of a probiotic compound to second-line therapy regimen. Methods Patients with peptic ulcer or functional dyspepsia infected by H. pylori were randomized to treatment with the furazolidone, tetracycline and lansoprazole regimen, twice a day for 7 days. In a double-blind study, patients received placebo or a probiotic compound (Lactobacillus acidophilus, Lactobacillus rhamnosus, Bifidobacterium bifidum and Streptococcus faecium) in capsules, twice a day for 30 days. A symptom questionnaire was administered in day zero, after completion of antibiotic therapy, after the probiotic use and eight weeks after the end of the treatment. Upper digestive endoscopy, histological assessment, rapid urease test and breath test were performed before and eight weeks after eradication treatment. Results One hundred and seven patients were enrolled: 21 men with active probiotic and 19 with placebo plus 34 women with active probiotic and 33 with placebo comprising a total of 55 patients with active probiotic and 52 with placebo. Fifty-one patients had peptic ulcer and 56 were diagnosed as functional dyspepsia. The per-protocol eradication rate with active probiotic was 89.8% and with placebo, 85.1% (p = 0.49); per intention to treat, 81.8% and 79.6%, respectively (p = 0.53). The rate of adverse effects at 7 days with the active probiotic was 59.3% and 71.2% with placebo (p = 0.20). At 30 days, it was 44.9% and 60.4%, respectively (p = 0.08). Conclusions The use of this probiotic compound compared to placebo in the proposed regimen in Brazilian patients with peptic ulcer or functional dyspepsia showed no significant difference in efficacy or adverse effects. Trial registration Current Controlled Trials ISRCTN04714018

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: The Maternal-Child Pastoral is a volunteer-based community organization of the Dominican Republic that works with families to improve child survival and development. A program that promotes key practices of maternal and child care through meetings with pregnant women and home visits to promote child growth and development was designed and implemented. This study aims to evaluate the impact of the program on nutritional status indicators of children in the first two years of age. Methods: A quasi-experimental design was used, with groups paired according to a socioeconomic index, comparing eight geographical areas of intervention with eight control areas. The intervention was carried out by lay health volunteers. Mothers in the intervention areas received home visits each month and participated in a group activity held biweekly during pregnancy and monthly after birth. The primary outcomes were length and body mass index for age. Statistical analyses were based on linear and logistic regression models. Results: 196 children in the intervention group and 263 in the control group were evaluated. The intervention did not show statistically significant effects on length, but point estimates found were in the desired direction: mean difference 0.21 (95%CI −0.02; 0.44) for length-for-age Z-score and OR 0.50 (95%CI 0.22; 1.10) for stunting. Significant reductions of BMI-for-age Z-score (−0.31, 95%CI −0.49; -0.12) and of BMI-for-age > 85th percentile (0.43, 95%CI 0.23; 0.77) were observed. The intervention showed positive effects in some indicators of intermediary factors such as growth monitoring, health promotion activities, micronutrient supplementation, exclusive breastfeeding and complementary feeding. Conclusions: Despite finding effect measures pointing to effects in the desired direction related to malnutrition, we could only detect a reduction in the risk of overweight attributable to the intervention. The findings related to obesity prevention may be of interest in the context of the nutritional transition. Given the size of this study, the results are encouraging and we believe a larger study is warranted.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report a technique to palliate hypoplastic left heart syndrome, with no PDA stenting, but with double polytetrafluoroethylene shunt from pulmonary artery to ascending and descending aorta by combined thoracotomies. A 30-day-old female was operated with this technique. Five months after first operation, the child was submitted to Norwood/Glenn operation. Good hemodinamic recovery and initial clinical evolution was observed. The child was extubated in 8th post operatory day and reentubated in the next day due to pulmonary infection. Despite antibiotic treatment, the child died after systemic infectious complications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Within this thesis a new double laser pulse pumping scheme for plasma-based, transient collisionally excited soft x-ray lasers (SXRL) was developed, characterized and utilized for applications. SXRL operations from ~50 up to ~200 electron volt were demonstrated applying this concept. As a central technical tool, a special Mach-Zehnder interferometer in the chirped pulse amplification (CPA) laser front-end was developed for the generation of fully controllable double-pulses to optimally pump SXRLs.rnThis Mach-Zehnder device is fully controllable and enables the creation of two CPA pulses of different pulse duration and variable energy balance with an adjustable time delay. Besides the SXRL pumping, the double-pulse configuration was applied to determine the B-integral in the CPA laser system by amplifying short pulse replica in the system, followed by an analysis in the time domain. The measurement of B-integral values in the 0.1 to 1.5 radian range, only limited by the reachable laser parameters, proved to be a promising tool to characterize nonlinear effects in the CPA laser systems.rnContributing to the issue of SXRL pumping, the double-pulse was configured to optimally produce the gain medium of the SXRL amplification. The focusing geometry of the two collinear pulses under the same grazing incidence angle on the target, significantly improved the generation of the active plasma medium. On one hand the effect was induced by the intrinsically guaranteed exact overlap of the two pulses on the target, and on the other hand by the grazing incidence pre-pulse plasma generation, which allows for a SXRL operation at higher electron densities, enabling higher gain in longer wavelength SXRLs and higher efficiency at shorter wavelength SXRLs. The observation of gain enhancement was confirmed by plasma hydrodynamic simulations.rnThe first introduction of double short-pulse single-beam grazing incidence pumping for SXRL pumping below 20 nanometer at the laser facility PHELIX in Darmstadt (Germany), resulted in a reliable operation of a nickel-like palladium SXRL at 14.7 nanometer with a pump energy threshold strongly reduced to less than 500 millijoule. With the adaptation of the concept, namely double-pulse single-beam grazing incidence pumping (DGRIP) and the transfer of this technology to the laser facility LASERIX in Palaiseau (France), improved efficiency and stability of table-top high-repetition soft x-ray lasers in the wavelength region below 20 nanometer was demonstrated. With a total pump laser energy below 1 joule the target, 2 mircojoule of nickel-like molybdenum soft x-ray laser emission at 18.9 nanometer was obtained at 10 hertz repetition rate, proving the attractiveness for high average power operation. An easy and rapid alignment procedure fulfilled the requirements for a sophisticated installation, and the highly stable output satisfied the need for a reliable strong SXRL source. The qualities of the DGRIP scheme were confirmed in an irradiation operation on user samples with over 50.000 shots corresponding to a deposited energy of ~ 50 millijoule.rnThe generation of double-pulses with high energies up to ~120 joule enabled the transfer to shorter wavelength SXRL operation at the laser facility PHELIX. The application of DGRIP proved to be a simple and efficient method for the generation of soft x-ray lasers below 10 nanometer. Nickel-like samarium soft x-ray lasing at 7.3 nanometer was achieved at a low total pump energy threshold of 36 joule, which confirmed the suitability of the applied pumping scheme. A reliable and stable SXRL operation was demonstrated, due to the single-beam pumping geometry despite the large optical apertures. The soft x-ray lasing of nickel-like samarium was an important milestone for the feasibility of applying the pumping scheme also for higher pumping pulse energies, which are necessary to obtain soft x-ray laser wavelengths in the water window. The reduction of the total pump energy below 40 joule for 7.3 nanometer short wavelength lasing now fulfilled the requirement for the installation at the high-repetition rate operation laser facility LASERIX.rn

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The upgrade of the Mainz Mikrotron (MAMI) electron accelerator facility in 2007 which raised the beam energy up to 1.5,GeV, gives the opportunity to study strangeness production channels through electromagnetic process. The Kaon Spectrometer (KAOS) managed by the A1 Collaboration, enables the efficient detection of the kaons associated with strangeness electroproduction. Used as a single arm spectrometer, it can be combined with the existing high-resolution spectrometers for exclusive measurements in the kinematic domain accessible to them.rnrnFor studying hypernuclear production in the ^A Z(e,e'K^+) _Lambda ^A(Z-1) reaction, the detection of electrons at very forward angles is needed. Therefore, the use of KAOS as a double-arm spectrometer for detection of kaons and the electrons at the same time is mandatory. Thus, the electron arm should be provided with a new detector package, with high counting rate capability and high granularity for a good spatial resolution. To this end, a new state-of-the-art scintillating fiber hodoscope has been developed as an electron detector.rnrnThe hodoscope is made of two planes with a total of 18432 scintillating double-clad fibers of 0.83 mm diameter. Each plane is formed by 72 modules. Each module is formed from a 60deg slanted multi-layer bundle, where 4 fibers of a tilted column are connected to a common read out. The read-out is made with 32 channels of linear array multianode photomultipliers. Signal processing makes use of newly developed double-threshold discriminators. The discriminated signal is sent in parallel to dead-time free time-to-digital modules and to logic modules for triggering purposes.rnrnTwo fiber modules were tested with a carbon beam at GSI, showing a time resolution of 220 ps (FWHM) and a position residual of 270 microm m (FWHM) with a detection efficiency epsilon>99%.rnrnThe characterization of the spectrometer arm has been achieved through simulations calculating the transfer matrix of track parameters from the fiber detector focal plane to the primary vertex. This transfer matrix has been calculated to first order using beam transport optics and has been checked by quasielastic scattering off a carbon target, where the full kinematics is determined by measuring the recoil proton momentum. The reconstruction accuracy for the emission parameters at the quasielastic vertex was found to be on the order of 0.3 % in first test realized.rnrnThe design, construction process, commissioning, testing and characterization of the fiber hodoscope are presented in this work which has been developed at the Institut für Kernphysik of the Johannes Gutenberg - Universität Mainz.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bidirectional ITP in fused-silica capillaries double-coated with Polybrene and poly-(vinylsulfonate) is a robust approach for analysis of low-molecular-mass compounds. EOF towards the cathode is strong (mobility >4.0 x 10(-8) m(2)/Vs) within the entire pH range investigated (2.40-8.08), dependent on ionic strength and buffer used and, at constant ionic strength, higher at alkaline pH. Electrokinetic separations and transport in such coated capillaries can be described with a dynamic computer model which permits the combined simulation of electrophoresis and electroosmosis in which the EOF is predicted either with a constant (i.e. pH- and ionic strength-independent) or a pH- and ionic strength-dependent electroosmotic mobility. Detector profiles predicted by computer simulation agree qualitatively well with bidirectional isotachopherograms that are monitored with a setup comprising two axial contactless conductivity detectors and a UV absorbance detector. The varying EOF predicted with a pH- and ionic strength-dependent electroosmotic mobility can be regarded as being realistic.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recently, sub-wavelength-pitch stacked double-gate metal nanotip arrays have been proposed to realize high current, high brightness electron bunches for ultrabright cathodes for x-ray free-electron laser applications. With the proposed device structure, ultrafast field emission of photoexcited electrons is efficiently driven by vertical incident near infrared laser pulses, via near field coupling of the surface plasmon polariton resonance of the gate electrodes with the nanotip apex. In this work, in order to gain insight in the underlying physical processes, the authors report detailed numerical studies of the proposed device. The results indicate the importance of the interaction of the double-layer surface plasmon polariton, the position of the nanotip, as well as the incident angle of the near infrared laser pulses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Oxygen 1s excitation and ionization processes in the CO2 molecule have been studied with dispersed and non-dispersed fluorescence spectroscopy as well as with the vacuum ultraviolet (VUV) photon?photoion coincidence technique. The intensity of the neutral O emission line at 845 nm shows particular sensitivity to core-to-Rydberg excitations and core?valence double excitations, while shape resonances are suppressed. In contrast, the partial fluorescence yield in the wavelength window 300?650 nm and the excitation functions of selected O+ and C+ emission lines in the wavelength range 400?500 nm display all of the absorption features. The relative intensity of ionic emission in the visible range increases towards higher photon energies, which is attributed to O 1s shake-off photoionization. VUV photon?photoion coincidence spectra reveal major contributions from the C+ and O+ ions and a minor contribution from C2+. No conclusive changes in the intensity ratios among the different ions are observed above the O 1s threshold. The line shape of the VUV?O+ coincidence peak in the mass spectrum carries some information on the initial core excitation

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the present uncertain global context of reaching an equal social stability and steady thriving economy, power demand expected to grow and global electricity generation could nearly double from 2005 to 2030. Fossil fuels will remain a significant contribution on this energy mix up to 2050, with an expected part of around 70% of global and ca. 60% of European electricity generation. Coal will remain a key player. Hence, a direct effect on the considered CO2 emissions business-as-usual scenario is expected, forecasting three times the present CO2 concentration values up to 1,200ppm by the end of this century. Kyoto protocol was the first approach to take global responsibility onto CO2 emissions monitoring and cap targets by 2012 with reference to 1990. Some of principal CO2emitters did not ratify the reduction targets. Although USA and China spur are taking its own actions and parallel reduction measures. More efficient combustion processes comprising less fuel consuming, a significant contribution from the electricity generation sector to a CO2 dwindling concentration levels, might not be sufficient. Carbon Capture and Storage (CCS) technologies have started to gain more importance from the beginning of the decade, with research and funds coming out to drive its come in useful. After first researching projects and initial scale testing, three principal capture processes came out available today with first figures showing up to 90% CO2 removal by its standard applications in coal fired power stations. Regarding last part of CO2 reduction chain, two options could be considered worthy, reusing (EOR & EGR) and storage. The study evaluates the state of the CO2 capture technology development, availability and investment cost of the different technologies, with few operation cost analysis possible at the time. Main findings and the abatement potential for coal applications are presented. DOE, NETL, MIT, European universities and research institutions, key technology enterprises and utilities, and key technology suppliers are the main sources of this study. A vision of the technology deployment is presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The fabrication of broadband amplifiers in wavelength division multiplexing (WDM) around 1.55 m, as they exhibit large stimulated cross sections and broad emission bandwidth. Bi4Ge3O12 (eultine type BGO) - well known scintillator material, also a rare-earth host material, photorefractive waveguides produced in it only using light ions in the past. Recently: MeV N+ ions and swift O5+ and C5+ ions, too*. Bi12GeO20 (sillenite type BGO) - high photoconductivity and photorefractive sensitivity in the visible and NIR good candidate for real-time holography and optical phase conjugation, photorefractive waveguides produced in it only using light ions. No previous attempts of ion beam fabrication of waveguides in it.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new material, C12A7 : electride, which might present a work function as low as 0.6 eV and moderately high temperature stability, was recently proposed as coating for floating bare tethers. Arising from heating under space operation, current is emitted by thermionic emission along a thus coated cathodic segment. A preliminary study on the space-charge-limited (SCL) double layer in front of the cathodic segment is presented using Langmuir’s SCL electron current between cylindrical electrodes and orbital-motion-limited ion-collection sheath. A detailed calculation of current and bias profiles along the entire tether length is carried out with ohmic effects and the transition from SCL to full Richardson-Dushman emission included. Analysis shows that in the simplest drag mode, under typical orbital and tether conditions, thermionic emission leads to a short cathodic section and may eliminate the need for an active cathodic device and its corresponding gas feed requirements and power subsystem, which results in a truly “propellant-less” tether system for such basic applications as de-orbiting low earth orbit satellites.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Una amarra electrodinámica (electrodynamic tether) opera sobre principios electromagnéticos intercambiando momento con la magnetosfera planetaria e interactuando con su ionosfera. Es un subsistema pasivo fiable para desorbitar etapas de cohetes agotadas y satélites al final de su misión, mitigando el crecimiento de la basura espacial. Una amarra sin aislamiento captura electrones del plasma ambiente a lo largo de su segmento polarizado positivamente, el cual puede alcanzar varios kilómetros de longitud, mientras que emite electrones de vuelta al plasma mediante un contactor de plasma activo de baja impedancia en su extremo catódico, tal como un cátodo hueco (hollow cathode). En ausencia de un contactor catódico activo, la corriente que circula por una amarra desnuda en órbita es nula en ambos extremos de la amarra y se dice que ésta está flotando eléctricamente. Para emisión termoiónica despreciable y captura de corriente en condiciones limitadas por movimiento orbital (orbital-motion-limited, OML), el cociente entre las longitudes de los segmentos anódico y catódico es muy pequeño debido a la disparidad de masas entre iones y electrones. Tal modo de operación resulta en una corriente media y fuerza de Lorentz bajas en la amarra, la cual es poco eficiente como dispositivo para desorbitar. El electride C12A7 : e−, que podría presentar una función de trabajo (work function) tan baja como W = 0.6 eV y un comportamiento estable a temperaturas relativamente altas, ha sido propuesto como recubrimiento para amarras desnudas. La emisión termoiónica a lo largo de un segmento así recubierto y bajo el calentamiento de la operación espacial, puede ser más eficiente que la captura iónica. En el modo más simple de fuerza de frenado, podría eliminar la necesidad de un contactor catódico activo y su correspondientes requisitos de alimentación de gas y subsistema de potencia, lo que resultaría en un sistema real de amarra “sin combustible”. Con este recubrimiento de bajo W, cada segmento elemental del segmento catódico de una amarra desnuda de kilómetros de longitud emitiría corriente como si fuese parte de una sonda cilíndrica, caliente y uniformemente polarizada al potencial local de la amarra. La operación es similar a la de una sonda de Langmuir 2D tanto en los segmentos catódico como anódico. Sin embargo, en presencia de emisión, los electrones emitidos resultan en carga espacial (space charge) negativa, la cual reduce el campo eléctrico que los acelera hacia fuera, o incluso puede desacelerarlos y hacerlos volver a la sonda. Se forma una doble vainas (double sheath) estable con electrones emitidos desde la sonda e iones provenientes del plasma ambiente. La densidad de corriente termoiónica, variando a lo largo del segmento catódico, podría seguir dos leyes distintas bajo diferentes condiciones: (i) la ley de corriente limitada por la carga espacial (space-charge-limited, SCL) o (ii) la ley de Richardson-Dushman (RDS). Se presenta un estudio preliminar sobre la corriente SCL frente a una sonda emisora usando la teoría de vainas (sheath) formada por la captura iónica en condiciones OML, y la corriente electrónica SCL entre los electrodos cilíndricos según Langmuir. El modelo, que incluye efectos óhmicos y el efecto de transición de emisión SCL a emisión RDS, proporciona los perfiles de corriente y potencial a lo largo de la longitud completa de la amarra. El análisis muestra que en el modo más simple de fuerza de frenado, bajo condiciones orbitales y de amarras típicas, la emisión termoiónica proporciona un contacto catódico eficiente y resulta en una sección catódica pequeña. En el análisis anterior, tanto la transición de emisión SCL a RD como la propia ley de emisión SCL consiste en un modelo muy simplificado. Por ello, a continuación se ha estudiado con detalle la solución de vaina estacionaria de una sonda con emisión termoiónica polarizada negativamente respecto a un plasma isotrópico, no colisional y sin campo magnético. La existencia de posibles partículas atrapadas ha sido ignorada y el estudio incluye tanto un estudio semi-analítico mediante técnica asintóticas como soluciones numéricas completas del problema. Bajo las tres condiciones (i) alto potencial, (ii) R = Rmax para la validez de la captura iónica OML, y (iii) potencial monotónico, se desarrolla un análisis asintótico auto-consistente para la estructura de plasma compleja que contiene las tres especies de cargas (electrones e iones del plasma, electrones emitidos), y cuatro regiones espaciales distintas, utilizando teorías de movimiento orbital y modelos cinéticos de las especies. Aunque los electrones emitidos presentan carga espacial despreciable muy lejos de la sonda, su efecto no se puede despreciar en el análisis global de la estructura de la vaina y de dos capas finas entre la vaina y la región cuasi-neutra. El análisis proporciona las condiciones paramétricas para que la corriente sea SCL. También muestra que la emisión termoiónica aumenta el radio máximo de la sonda para operar dentro del régimen OML y que la emisión de electrones es mucho más eficiente que la captura iónica para el segmento catódico de la amarra. En el código numérico, los movimientos orbitales de las tres especies son modelados para potenciales tanto monotónico como no-monotónico, y sonda de radio R arbitrario (dentro o más allá del régimen de OML para la captura iónica). Aprovechando la existencia de dos invariante, el sistema de ecuaciones Poisson-Vlasov se escribe como una ecuación integro-diferencial, la cual se discretiza mediante un método de diferencias finitas. El sistema de ecuaciones algebraicas no lineal resultante se ha resuelto de con un método Newton-Raphson paralelizado. Los resultados, comparados satisfactoriamente con el análisis analítico, proporcionan la emisión de corriente y la estructura del plasma y del potencial electrostático. ABSTRACT An electrodynamic tether operates on electromagnetic principles and exchanges momentum through the planetary magnetosphere, by continuously interacting with the ionosphere. It is a reliable passive subsystem to deorbit spent rocket stages and satellites at its end of mission, mitigating the growth of orbital debris. A tether left bare of insulation collects electrons by its own uninsulated and positively biased segment with kilometer range, while electrons are emitted by a low-impedance active device at the cathodic end, such as a hollow cathode, to emit the full electron current. In the absence of an active cathodic device, the current flowing along an orbiting bare tether vanishes at both ends and the tether is said to be electrically floating. For negligible thermionic emission and orbital-motion-limited (OML) collection throughout the entire tether (electron/ion collection at anodic/cathodic segment, respectively), the anodic-to-cathodic length ratio is very small due to ions being much heavier, which results in low average current and Lorentz drag. The electride C12A7 : e−, which might present a possible work function as low as W = 0.6 eV and moderately high temperature stability, has been proposed as coating for floating bare tethers. Thermionic emission along a thus coated cathodic segment, under heating in space operation, can be more efficient than ion collection and, in the simplest drag mode, may eliminate the need for an active cathodic device and its corresponding gas-feed requirements and power subsystem, which would result in a truly “propellant-less” tether system. With this low-W coating, each elemental segment on the cathodic segment of a kilometers-long floating bare-tether would emit current as if it were part of a hot cylindrical probe uniformly polarized at the local tether bias, under 2D probe conditions that are also applied to the anodic-segment analysis. In the presence of emission, emitted electrons result in negative space charge, which decreases the electric field that accelerates them outwards, or even reverses it, decelerating electrons near the emitting probe. A double sheath would be established with electrons being emitted from the probe and ions coming from the ambient plasma. The thermionic current density, varying along the cathodic segment, might follow two distinct laws under different con ditions: i) space-charge-limited (SCL) emission or ii) full Richardson-Dushman (RDS) emission. A preliminary study on the SCL current in front of an emissive probe is presented using the orbital-motion-limited (OML) ion-collection sheath and Langmuir’s SCL electron current between cylindrical electrodes. A detailed calculation of current and bias profiles along the entire tether length is carried out with ohmic effects considered and the transition from SCL to full RDS emission is included. Analysis shows that in the simplest drag mode, under typical orbital and tether conditions, thermionic emission provides efficient cathodic contact and leads to a short cathodic section. In the previous analysis, both the transition between SCL and RDS emission and the current law for SCL condition have used a very simple model. To continue, considering an isotropic, unmagnetized, colissionless plasma and a stationary sheath, the probe-plasma contact is studied in detail for a negatively biased probe with thermionic emission. The possible trapped particles are ignored and this study includes both semianalytical solutions using asymptotic analysis and complete numerical solutions. Under conditions of i) high bias, ii) R = Rmax for ion OML collection validity, and iii) monotonic potential, a self-consistent asymptotic analysis is carried out for the complex plasma structure involving all three charge species (plasma electrons and ions, and emitted electrons) and four distinct spatial regions using orbital motion theories and kinetic modeling of the species. Although emitted electrons present negligible space charge far away from the probe, their effect cannot be neglected in the global analysis for the sheath structure and two thin layers in between the sheath and the quasineutral region. The parametric conditions for the current to be space-chargelimited are obtained. It is found that thermionic emission increases the range of probe radius for OML validity and is greatly more effective than ion collection for cathodic contact of tethers. In the numerical code, the orbital motions of all three species are modeled for both monotonic and non-monotonic potential, and for any probe radius R (within or beyond OML regime for ion collection). Taking advantage of two constants of motion (energy and angular momentum), the Poisson-Vlasov equation is described by an integro differential equation, which is discretized using finite difference method. The non-linear algebraic equations are solved using a parallel implementation of the Newton-Raphson method. The results, which show good agreement with the analytical results, provide the results for thermionic current, the sheath structure, and the electrostatic potential.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There is considerable evidence from animal studies that gonadal steroid hormones modulate neuronal activity and affect behavior. To study this in humans directly, we used H215O positron-emission tomography to measure regional cerebral blood flow (rCBF) in young women during three pharmacologically controlled hormonal conditions spanning 4–5 months: ovarian suppression induced by the gonadotropin-releasing hormone agonist leuprolide acetate (Lupron), Lupron plus estradiol replacement, and Lupron plus progesterone replacement. Estradiol and progesterone were administered in a double-blind cross-over design. On each occasion positron-emission tomography scans were performed during (i) the Wisconsin Card Sorting Test, a neuropsychological test that physiologically activates prefrontal cortex (PFC) and an associated cortical network including inferior parietal lobule and posterior inferolateral temporal gyrus, and (ii) a no-delay matching-to-sample sensorimotor control task. During treatment with Lupron alone (i.e., with virtual absence of gonadal steroid hormones), there was marked attenuation of the typical Wisconsin Card Sorting Test activation pattern even though task performance did not change. Most strikingly, there was no rCBF increase in PFC. When either progesterone or estrogen was added to the Lupron regimen, there was normalization of the rCBF activation pattern with augmentation of the parietal and temporal foci and return of the dorsolateral PFC activation. These data directly demonstrate that the hormonal milieu modulates cognition-related neural activity in humans.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

When respiring rat liver mitochondria are incubated in the presence of Fe(III) gluconate, their DNA (mtDNA) relaxes from the supercoiled to the open circular form dependent on the iron dose. Anaerobiosis or antioxidants fail to completely inhibit the unwinding. High-resolution field-emission in-lens scanning electron microscopy imaging, in concert with backscattered electron detection, pinpoints nanometer-range iron colloids bound to mtDNA isolated from iron-exposed mitochondria. High-resolution field-emission in-lens scanning electron microscopy with backscattered electron detection imaging permits simultaneous detailed visual analysis of DNA topology, iron dose-dependent mtDNA unwinding, and assessment of iron colloid formation on mtDNA strands.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A microwave-based thermal nebulizer (MWTN) has been employed for the first time as on-line preconcentration device in inductively coupled plasma atomic emission spectrometry (ICP-AES). By the appropriate selection of the experimental conditions, the MWTN could be either operated as a conventional thermal nebulizer or as on-line analyte preconcentration and nebulization device. Thus, when operating at microwave power values above 100 W and highly concentrated alcohol solutions, the amount of energy per solvent mass liquid unit (EMR) is high enough to completely evaporate the solvent inside the system and, as a consequence, the analyte is deposited (and then preconcentrated) on the inner walls of the MWTN capillary. When reducing the EMR to the appropriate value (e.g., by reducing the microwave power at a constant sample uptake rate) the retained analyte is swept along by the liquid-gas stream and an analyte-enriched aerosol is generated and next introduced into the plasma cell. Emission signals obtained with the MWTN operating in preconcentration-nebulization mode improved when increasing preconcentration time and sample uptake rate as well as when decreasing the nozzle inner diameter. When running with pure ethanol solution at its optimum experimental conditions, the MWTN in preconcentration-nebulization mode afforded limits of detection up to one order of magnitude lowers than those obtained operating the MWTN exclusively as a nebulizer. To validate the method, the multi-element analysis (i.e. Al, Ca, Cd, Cr, Cu, Fe, K, Mg, Mn, Na, Pb and Zn) of different commercial spirit samples in ICP-AES has been performed. Analyte recoveries for all the elements studied ranged between 93% and 107% and the dynamic linear range covered up to 4 orders of magnitude (i.e. from 0.1 to 1000 μg L−1). In these analysis, both MWTN operating modes afforded similar results. Nevertheless, the preconcentration-nebulization mode permits to determine a higher number of analytes due to its higher detection capabilities.