18 resultados para Emission permits auctionsj double auctions.

em CaltechTHESIS


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In Part I of this thesis, a new magnetic spectrometer experiment which measured the β spectrum of ^(35)S is described. New limits on heavy neutrino emission in nuclear β decay were set, for a heavy neutrino mass range between 12 and 22 keV. In particular, this measurement rejects the hypothesis that a 17 keV neutrino is emitted, with sin^2 θ = 0.0085, at the 6δ statistical level. In addition, an auxiliary experiment was performed, in which an artificial kink was induced in the β spectrum by means of an absorber foil which masked a fraction of the source area. In this measurement, the sensitivity of the magnetic spectrometer to the spectral features of heavy neutrino emission was demonstrated.

In Part II, a measurement of the neutron spallation yield and multiplicity by the Cosmic-ray Underground Background Experiment is described. The production of fast neutrons by muons was investigated at an underground depth of 20 meters water equivalent, with a 200 liter detector filled with 0.09% Gd-loaded liquid scintillator. We measured a neutron production yield of (3.4 ± 0.7) x 10^(-5) neutrons per muon-g/cm^2, in agreement with other experiments. A single-to-double neutron multiplicity ratio of 4:1 was observed. In addition, stopped π^+ decays to µ^+ and then e^+ were observed as was the associated production of pions and neutrons, by the muon spallation interaction. It was seen that practically all of the π^+ produced by muons were also accompanied by at least one neutron. These measurements serve as the basis for neutron background estimates for the San Onofre neutrino detector.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oligonucleotide-directed triple helix formation is one of the most versatile methods for the sequence specific recognition of double helical DNA. Chapter 2 describes affinity cleaving experiments carried out to assess the recognition potential for purine-rich oligonucleotides via the formation of triple helices. Purine-rich oligodeoxyribonucleotides were shown to bind specifically to purine tracts of double helical DNA in the major groove antiparallel to the purine strand of the duplex. Specificity was derived from the formation of reverse Hoogsteen G•GC, A•AT and T•AT triplets and binding was limited to mostly purine tracts. This triple helical structure was stabilized by multivalent cations, destabilized by high concentrations of monovalent cations and was insensitive to pH. A single mismatched base triplet was shown to destabilize a 15 mer triple helix by 1.0 kcal/mole at 25°C. In addition, stability appeared to be correlated to the number of G•GC triplets formed in the triple helix. This structure provides an additional framework as a basis for the design of new sequence specific DNA binding molecules.

In work described in Chapter 3, the triplet specificities and required strand orientations of two classes of DNA triple helices were combined to target double helical sequences containing all four base pairs by alternate strand triple helix formation. This allowed for the use of oligonucleotides containing only natural 3'-5' phosphodiester linkages to simultaneously bind both strands of double helical DNA in the major groove. The stabilities and structures of these alternate strand triple helices depended on whether the binding site sequence was 5'-(purine)_m (pyrimidine)_n-3' or 5'- (pyrimidine)_m (purine)_n-3'.

In Chapter 4, the ability of oligonucleotide-cerium(III) chelates to direct the transesterfication of RNA was investigated. Procedures were developed for the modification of DNA and RNA oligonucleotides with a hexadentate Schiff-base macrocyclic cerium(III) complex. In addition, oligoribonucleotides modified by covalent attachment of the metal complex through two different linker structures were prepared. The ability of these structures to direct transesterification to specific RNA phosphodiesters was assessed by gel electrophoresis. No reproducible cleavage of the RNA strand consistent with transesterification could be detected in any of these experiments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Observations of the Galactic center region black hole candidate 1E 1740.7-2942 have been carried out using the Caltech Gamma-Ray Imaging Payload (GRIP), the Röntgensatellit (ROSAT) and the Very Large Array (VLA). These multiwavelength observations have helped to establish the association between a bright emitter of hard X-rays and soft γ-rays, the compact core of a double radio jet source, and the X-ray source, 1E 1740.7-2942. They have also provided information on the X-ray and hard X-ray spectrum.

The Galactic center region was observed by GRIP during balloon flights from Alice Springs, NT, Australia on 1988 April 12 and 1989 April 3. These observations revealed that 1E 1740.7-2942 was the strongest source of hard X-rays within ~10° of the Galactic center. The source spectrum from each flight is well fit by a single power law in the energy range 35-200 keV. The best-fit photon indices and 100 keV normalizations are: γ = (2.05 ± 0.15) and K_(100) = (8.5 ± 0.5) x 10^(-5) cm^(-2) s^(-1) keV^(-1) and γ = (2.2 ± 0.3) and K_(100) = (7.0 ± 0.7) x 10^(-5) cm^(-2) s^(-1) keV^(-1) for the 1988 and 1989 observations respectively. No flux above 200 keV was detected during either observation. These values are consistent with a constant spectrum and indicate that 1E 1740.7-2942 was in its normal hard X-ray emission state. A search on one hour time scales showed no evidence for variability.

The ROSAT HRI observed 1E 1740.7-2942 during the period 1991 March 20-24. An improved source location has been derived from this observation. The best fit coordinates (J2000) are: Right Ascension = 17^h43^m54^s.9, Declination = -29°44'45".3, with a 90% confidence error circle of radius 8".5. The PSPC observation was split between periods from 1992 September 28- October 4 and 1993 March 23-28. A thermal bremsstrahlung model fit to the data yields a column density of N_H = 1.12^(+1.51)_(0.18) x cm^(-2) , consistent with earlier X- ray measurements.

We observed the region of the Einstein IPC error circle for 1E 1740.7-2942 with the VLA at 1.5 and 4.9 GHz on 1989 March 2. The 4.9 GHz observation revealed two sources. Source 'A', which is the core of a double aligned radio jet source (Mirabel et al. 1992), lies within our ROSAT error circle, further strengthening its identification with 1E 1740.7-2942.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis describes the design, construction and performance of a high-pressure, xenon, gas time projection chamber (TPC) for the study of double beta decay in ^(136) Xe. The TPC when operating at 5 atm can accommodate 28 moles of 60% enriched ^(136) Xe. The TPC has operated as a detector at Caltech since 1986. It is capable of reconstructing a charged particle trajectory and can easily distinguish between different kinds of charged particles. A gas purification and xenon gas recovery system were developed. The electronics for the 338 channels of readout was developed along with a data acquistion system. Currently, the detector is being prepared at the University of Neuchatel for installation in the low background laboratory situated in the St. Gotthard tunnel, Switzerland. In one year of runtime the detector should be sensitive to a 0ν lifetime of the order of 10^(24) y, which corresponds to a neutrino mass in the range 0.3 to 3.3 eV.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Blazars are active galaxies with a jet closely oriented to our line of sight. They are powerful, variable emitters from radio to gamma-ray wavelengths. Although the general picture of synchrotron emission at low energies and inverse Compton at high energies is well established, important aspects of blazars are not well understood. In particular, the location of the gamma-ray emission region is not clearly established, with some theories favoring a location close to the central engine, while others place it at parsec scales in the radio jet.

We developed a program to locate the gamma-ray emission site in blazars, through the study of correlated variations between their gamma-ray and radio-wave emission. Correlated variations are expected when there is a relation between emission processes at both bands, while delays tell us about the relative location of their energy generation zones. Monitoring at 15 GHz using the Owens Valley Radio Observatory 40 meter telescope started in mid-2007. The program monitors 1593 blazars twice per week, including all blazars detected by the Fermi Gamma-ray Space Telescope (Fermi) north of -20 degrees declination. This program complements the continuous monitoring of gamma-rays by Fermi.

Three year long gamma-ray light curves for bright Fermi blazars are cross-correlated with four years of radio monitoring. The significance of cross-correlation peaks is investigated using simulations that account for the uneven sampling and noise properties of the light curves, which are modeled as red-noise processes with a simple power-law power spectral density. We found that out of 86 sources with high quality data, only three show significant correlations (AO 0235+164, B2 2308+34 and PKS 1502+106). Additionally, we find a significant correlation for Mrk 421 when including the strong gamma-ray/radio flare of late 2012. In all four cases radio variations lag gamma-ray variations, suggesting that the gamma-ray emission originates upstream of the radio emission. For PKS 1502+106 we locate the gamma-ray emission site parsecs away from the central engine, thus disfavoring the model of Blandford and Levinson (1995), while other cases are inconclusive. These findings show that continuous monitoring over long time periods is required to understand the cross-correlation between gamma-ray and radio-wave variability in most blazars.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this thesis is to present new observations of thermal-infrared radiation from asteroids. Stellar photometry was performed to provide standards for comparison with the asteroid data. The details of the photometry and the data reduction are discussed in Part 1. A system of standard stars is derived for wavelengths of 8.5, 10.5 and 11.6 µm and a new calibration is adopted. Sources of error are evaluated and comparisons are made with the data of other observers.

The observations and analysis of the thermal-emission observations of asteroids are presented in Part 2. Thermal-emission lightcurve and phase effect data are considered. Special color diagrams are introduced to display the observational data. These diagrams are free of any model-dependent assumptions and show that asteroids differ in their surface properties.

On the basis of photometric models, (4) Vesta is thought to have a bolometric Bond albedo of about 0.1, an emissivity greater than 0.7 and a true radius that is close to the model value of 300^(+50)_(-30)km. Model albedos and model radii are given for asteroids 1, 2, 4, 5, 6, 7, 15, 19, 20, 27, 39, 44, 68, 80, 324 and 674. The asteroid (324) Bamberga is extremely dark with a model (~bolometric Bond) albedo in the 0.01 - 0.02 range, which is thought to be the lowest albedo yet measured for any solar-system body. The crucial question about such low-albedo asteroids is their number and the distribution of their orbits.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aromatic core of double helical DNA possesses the unique and remarkable ability to form a conduit for electrons to travel over exceptionally long molecular distances. This core of π-stacked nucleobases creates an efficient pathway for charge transfer to proceed that is exquisitely sensitive to even subtle perturbations. Ground state electrochemistry of DNA-modified electrodes has been one of the major techniques used both to investigate and to harness the property of DNA-mediated charge transfer. DNA-modified electrodes have been an essential tool for both gaining insights into the fundamental properties of DNA and, due to the exquisite specificity of DNA-mediated charge transfer for the integrity of the π-stack, for use in next generation diagnostic sensing. Here, multiplexed DNA-modified electrodes are used to (i) gain new insights on the electrochemical coupling of metalloproteins to the DNA π-stack with relevance to the fundaments of in vivo DNA-mediated charge transfer and (ii) enhance the overall sensitivity of DNA-mediated reduction for use in the detection of low abundance diagnostic targets.

First, Methylene Blue (MB′) was covalently attached to DNA through a flexible C12 alkyl linker to yield a new redox reporter for DNA electrochemistry measurements with enhanced sensitivity. Tethered, intercalated MB′ was reduced through DNA-mediated charge transport. The redox signal intensity for MB′-dT-C12-DNA was found to be at least 3 fold larger than that of previously used Nile Blue (NB)-dT-DNA, which is coupled to the base stack via direct conjugation. The signal attenuation, due to an intervening mismatch, and therefore the degree of DNA-mediated reduction, does, however, depend on the DNA film morphology and the backfilling agent used to passivate the surface. These results highlight two possible mechanisms for the reduction of MB′ on the DNA-modified electrode that are distinguishable by their kinetics: reduction mediated by the DNA base pair stack and direct surface reduction of MB′ at the electrode. The extent of direct reduction at the surface can be minimized by overall DNA assembly conditions.

Next, a series of intercalation-based DNA-mediated electrochemical reporters were developed, using a flexible alkane linkage to validate and explore their DNA-mediated reduction. The general mechanism for the reduction of distally bound redox active species, covalently tethered to DNA through flexible alkyl linkages, was established to be an intraduplex DNA-mediated pathway. MB, NB, and anthraquinone were covalently tethered to DNA with three different covalent linkages. The extent of electronic coupling of the reporter was shown to correlate with the DNA binding affinity of the redox active species, supporting an intercalative mechanism. These electrochemical signals were shown to be exceptionally sensitive to a single intervening π-stack perturbation, an AC mismatch, in a densely packed DNA monolayer, which further supports that the reduction is DNA-mediated. Finally, this DNA-mediated reduction of MB occurs primarily via intra- rather than inter duplex intercalation, as probed through varying the proximity and integrity of the neighboring duplex DNA. Further gains to electrochemical sensitivity of our DNA-modified devices were then achieved through the application of electrocatalytic signal amplification using these solvent accessible intercalative reporters, MB-dT-C8, and hemoglobin as a novel electron sink. Electrocatalysis offers an excellent means of electrochemical signal amplification, yet in DNA based sensors, its application has been limited due to strict assembly conditions. We describe the use of hemoglobin as a robust and effective electron sink for electrocatalysis in DNA sensing on low density DNA films. Protein shielding of the heme redox center minimizes direct reduction at the electrode surface and permits assays on low density DNA films. Electrocatalysis of MB that is covalently tethered to the DNA by a flexible alkyl linkage allows for efficient interactions with both the base stack and hemoglobin. Consistent suppression of the redox signal upon incorporation of single CA mismatch in the DNA oligomer demonstrates that both the unamplified and the electrocatalytically amplified redox signals are generated through DNA-mediated charge transport. Electrocatalysis with hemoglobin is robust: it is stable to pH and temperature variations. The utility and applicability of electrocatalysis with hemoglobin is demonstrated through restriction enzyme detection, and an enhancement in sensitivity permits femtomole DNA sampling.

Finally, we expanded the application of our multiplexed DNA-modified electrodes to the electrochemical characterization of DNA-bound proteins containing [4Fe-4S] clusters. DNA-modified electrodes have become an essential tool for the characterization of the redox chemistry of DNA repair proteins that contain redox cofactors. Multiplexed analysis of EndonucleaseIII (EndoIII), a DNA repair protein containing a [4Fe-4S] cluster known to be accessible via DNA-mediated charge transport, elucidated subtle differences in the electrochemical behavior as a function of DNA morphology. DNA-bound EndoIII is seen to have two different electron transfer pathways for reduction, either through the DNA base stack or through direct surface reduction. Closely packed DNA films, where the protein has limited surface accessibility, produce electrochemical signals reflecting electron transfer that is DNA-mediated. The electrochemical comparison of EndoIII mutants, including a new family of mutations altering the electrostatics surrounding the [4Fe-4S] cluster, was able to be quantitatively performed. While little change in the midpoint potential was found for this family of mutants, significant variations in the efficiency of DNA-mediated electron transfer were apparent. Based on the stability of these proteins, examined by circular dichroism, we propose that the electron transfer pathway can be perturbed not only by the removal of aromatic residues, but also through changes in solvation near the cluster.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Observational and theoretical work towards the separation of foreground emission from the cosmic microwave background is described. The bulk of this work is in the design, construction, and commissioning of the C-Band All-Sky Survey (C-BASS), an experiment to produce a template of the Milky Way Galaxy's polarized synchrotron emission. Theoretical work is the derivation of an analytical approximation to the emission spectrum of spinning dust grains.

The performance of the C-BASS experiment is demonstrated through a preliminary, deep survey of the North Celestial Pole region. A comparison to multiwavelength data is performed, and the thermal and systematic noise properties of the experiment are explored. The systematic noise has been minimized through careful data processing algorithms, implemented both in the experiment's Field Programmable Gate Array (FPGA) based digital backend and in the data analysis pipeline. Detailed descriptions of these algorithms are presented.

The analytical function of spinning dust emission is derived through the application of careful approximations, with each step tested against numerical calculations. This work is intended for use in the parameterized separation of cosmological foreground components and as a framework for interpreting and comparing the variety of anomalous microwave emission observations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Kinetic and electronic processes in a Cu/CuCl double pulsed laser were investigated by measuring discharge and laser pulse characteristics, and by computer modeling. There are two time scales inherent to the operation of the Cu/CuCl laser. The first is during the interpulse afterglow (tens to hundreds of microseconds). The second is during the pumping pulse (tens of nanoseconds). It was found that the character of the pumping pulse is largely determined by the initial conditions provided by the interpulse afterglow. By tailoring the dissociation pulse to be long and low energy, and by conditioning the afterglow, one may select the desired initial conditions and thereby significantly improve laser performance. With a low energy dissociation pulse, the fraction of metastable copper obtained from a CuCl dissociation is low. By maintaining the afterglow, contributions to the metastable state from ion recombinations are prevented, and the plasma impedance remains low thereby increasing the rate of current rise during the pumping pulse. Computer models for the dissociation pulse, afterglow, pumping pulse and laser pulse reproduced experimentally observed behavior of laser pulse energy and power as a function of time delay, pumping pulse characteristics, and buffer gas pressure. The sensitivity of laser pulse properties on collisional processes (e.g., CuCl reassociation rates) was investigated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work contains 4 topics dealing with the properties of the luminescence from Ge.

The temperature, pump-power and time dependences of the photoluminescence spectra of Li-, As-, Ga-, and Sb-doped Ge crystals were studied. For impurity concentrations less than about 1015cm-3, emissions due to electron-hole droplets can clearly be identified. For impurity concentrations on the order of 1016cm-3, the broad lines in the spectra, which have previously been attributed to the emission from the electron-hole-droplet, were found to possess pump-power and time dependent line shape. These properties show that these broad lines cannot be due to emission of electron-hole-droplets alone. We interpret these lines to be due to a combination of emissions from (1) electron-hole- droplets, (2) broadened multiexciton complexes, (3) broadened bound-exciton, and (4) plasma of electrons and holes. The properties of the electron-hole-droplet in As-doped Ge were shown to agree with theoretical predictions.

The time dependences of the luminescence intensities of the electron-hole-droplet in pure and doped Ge were investigated at 2 and 4.2°K. The decay of the electron-hole-droplet in pure Ge at 4.2°K was found to be pump-power dependent and too slow to be explained by the widely accepted model due to Pokrovskii and Hensel et al. Detailed study of the decay of the electron-hole-droplets in doped Ge were carried out for the first time, and we find no evidence of evaporation of excitons by electron-hole-droplets at 4.2°K. This doped Ge result is unexplained by the model of Pokrovskii and Hensel et al. It is shown that a model based on a cloud of electron-hole-droplets generated in the crystal and incorporating (1) exciton flow among electron-hole-droplets in the cloud and (2) exciton diffusion away from the cloud is capable of explaining the observed results.

It is shown that impurities, introduced during device fabrication, can lead to the previously reported differences of the spectra of laser-excited high-purity Ge and electrically excited Ge double injection devices. By properly choosing the device geometry so as to minimize this Li contamination, it is shown that the Li concentration in double injection devices may be reduced to less than about 1015cm-3 and electrically excited luminescence spectra similar to the photoluminescence spectra of pure Ge may be produced. This proves conclusively that electron-hole-droplets may be created in double injection devices by electrical excitation.

The ratio of the LA- to TO-phonon-assisted luminescence intensities of the electron-hole-droplet is demonstrated to be equal to the high temperature limit of the same ratio of the exciton for Ge. This result gives one confidence to determine similar ratios for the electron-hole-droplet from the corresponding exciton ratio in semiconductors in which the ratio for the electron-hole-droplet cannot be determined (e.g., Si and GaP). Knowing the value of this ratio for the electron-hole-droplet, one can obtain accurate values of many parameters of the electron-hole-droplet in these semiconductors spectroscopically.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the first part of this thesis, experiments utilizing an NMR phase interferometric concept are presented. The spinor character of two-level systems is explicitly demonstrated by using this concept. Following this is the presentation of an experiment which uses this same idea to measure relaxation times of off-diagonal density matrix elements corresponding to magnetic-dipole-forbidden transitions in a ^(13)C-^1H, AX spin system. The theoretical background for these experiments and the spin dynamics of the interferometry are discussed also.

The second part of this thesis deals with NMR dipolar modulated chemical shift spectroscopy, with which internuclear bond lengths and bond angles with respect to the chemical shift principal axis frame are determined from polycrystalline samples. Experiments using benzene and calcium formate verify the validity of the technique in heteronuclear (^(13)C-^1H) systems. Similar experiments on powdered trichloroacetic acid confirm the validity in homonuclear (^1H- ^1H) systems. The theory and spin dynamics are explored in detail, and the effects of a number of multiple pulse sequences are discussed.

The last part deals with an experiment measuring the ^(13)C chemical shift tensor in K_2Pt(CN)_4Br_(0.3) • 3H_2O, a one-dimensional conductor. The ^(13)C spectra are strongly affected by ^(14)N quadrupolar interactions via the ^(13)C - ^(14)N dipolar interaction. Single crystal rotation spectra are shown.

An appendix discussing the design, construction, and performance of a single-coil double resonance NMR sample probe is included.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The microwave scattering properties of an axially magnetized afterglow plasma column in an S-band waveguide have been investigated experimentally. The column axis is perpendicular to the electric field and the direction of wave propagation in the H_(10)-mode waveguide. Strong absorption is found in the range of upper hybrid frequencies, ω_c ≤ ω ≤ [ω^2_c + ω^2_p(r,t)]^(1/2) where ω_c is the electron cyclotron frequency and ω_p is the locally and temporally varying electron plasma frequency. With the high absorption the noise emission approaches the blackbody limit. A microwave radiometer has been used to measure the noise power and with a comparison and null-technique the electron temperature. As emission and absorption are largely confined to a resonant layer, spatially resolved temperature data are obtained. Time resolution is obtained by gating the radiometer. The peak electron density is derived from the emission or absorption onset at the maximum upper hybrid frequency and confirmed by independent measurements. With this diagnostic technique the electron density and temperature decay has been studied under a variety of experimental conditions. Ambipolar diffusion and collisional cooling essentially account for the plasma decay, but impurities and metastable ions play an important role. The diagnostic method is successfully applied in a microwave heating experiment. The existence of absorbing resonant layers is shown by a peak in the radial temperature profile where the local upper hybrid frequency equals the heating frequency. The knowledge of the plasma parameters is important in the study of hot plasma effects. Buchsbaum-Hasegawa modes are investigated in a wide range of magnetic fields (.5 < ω_c/ω < .985).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Microwave noise emission at the harmonics of the electron cyclotron frequency from the magnetized plasma column of a Penning discharge is investigated experimentally. The harmonic emission spectrum is observed using oxygen gas in a variety of discharge configurations. It is found that grid stabilization of the plasma column has very little effect on the emission spectrum. Measurements of the shape and location of the harmonic emission lines are described in detail. On the basis of a microwave interferometer measurement of the electron density, it is concluded that the existence of a hybrid layer somewhere on the plasma column is a necessary condition for the observation of harmonic emission. The relaxation time and the cathode voltage dependence of the harmonic emission are investigated using a pulse modulation technique. It is found that the emission intensity increases rapidly with the magnitude of the cathode voltage and that the relaxation time decreases with increasing neutral gas pressure. High intensity nonharmonic radiation is observed and identified as resulting from a beam-plasma wave instability thereby eliminating the same instability as a possible source of the harmonic emission. It is found that the collective experimental results are in reasonable agreement with the single particle electrostatic radiation theory of Canobbio and Croci.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Noise measurements from 140°K to 350°K ambient temperature and between 10kHz and 22MHz performed on a double injection silicon diode as a function of operating point indicate that the high frequency noise depends linearly on the ambient temperature T and on the differential conductance g measured at the same frequency. The noise is represented quantitatively by〈i^2〉 = α•4kTgΔf. A new interpretation demands Nyquist noise with α ≡ 1 in these devices at high frequencies. This is in accord with an equivalent circuit derived for the double injection process. The effects of diode geometry on the static I-V characteristic as well as on the ac properties are illustrated. Investigation of the temperature dependence of double injection yields measurements of the temperature variation of the common high-level lifetime τ(τ ∝ T^2), the hole conductivity mobility µ_p (µ_p ∝ T^(-2.18)) and the electron conductivity mobility µ_n(µ_n ∝ T^(-1.75)).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although numerous theoretical efforts have been put forth, a systematic, unified and predictive theoretical framework that is able to capture all the essential physics of the interfacial behaviors of ions, such as the Hofmeister series effect, Jones-Ray effect and the salt effect on the bubble coalescence remain an outstanding challenge. The most common approach to treating electrostatic interactions in the presence of salt ions is the Poisson-Boltzmann (PB) theory. However, there are many systems for which the PB theory fails to offer even a qualitative explanation of the behavior, especially for ions distributed in the vicinity of an interface with dielectric contrast between the two media (like the water-vapor/oil interface). A key factor missing in the PB theory is the self energy of the ion.

In this thesis, we develop a self-consistent theory that treats the electrostatic self energy (including both the short-range Born solvation energy and the long-range image charge interactions), the nonelectrostatic contribution of the self energy, the ion-ion correlation and the screening effect systematically in a single framework. By assuming a finite charge spread of the ion instead of using the point-charge model, the self energy obtained by our theory is free of the divergence problems and gives a continuous self energy across the interface. This continuous feature allows ions on the water side and the vapor/oil side of the interface to be treated in a unified framework. The theory involves a minimum set of parameters of the ion, such as the valency, radius, polarizability of the ions, and the dielectric constants of the medium, that are both intrinsic and readily available. The general theory is first applied to study the thermodynamic property of the bulk electrolyte solution, which shows good agreement with the experiment result for predicting the activity coefficient and osmotic coefficient.

Next, we address the effect of local Born solvation energy on the bulk thermodynamics and interfacial properties of electrolyte solution mixtures. We show that difference in the solvation energy between the cations and anions naturally gives rise to local charge separation near the interface, and a finite Galvani potential between two coexisting solutions. The miscibility of the mixture can either increases or decreases depending on the competition between the solvation energy and translation entropy of the ions. The interfacial tension shows a non-monotonic dependence on the salt concentration: it increases linearly with the salt concentration at higher concentrations, and decreases approximately as the square root of the salt concentration for dilute solutions, which is in agreement with the Jones-Ray effect observed in experiment.

Next, we investigate the image effects on the double layer structure and interfacial properties near a single charged plate. We show that the image charge repulsion creates a depletion boundary layer that cannot be captured by a regular perturbation approach. The correct weak-coupling theory must include the self-energy of the ion due to the image charge interaction. The image force qualitatively alters the double layer structure and properties, and gives rise to many non-PB effects, such as nonmonotonic dependence of the surface energy on concentration and charge inversion. The image charge effect is then studied for electrolyte solutions between two plates. For two neutral plates, we show that depletion of the salt ions by the image charge repulsion results in short-range attractive and long-range repulsive forces. If cations and anions are of different valency, the asymmetric depletion leads to the formation of an induced electrical double layer. For two charged plates, the competition between the surface charge and the image charge effect can give rise to like- charge attraction.

Then, we study the inhomogeneous screening effect near the dielectric interface due to the anisotropic and nonuniform ion distribution. We show that the double layer structure and interfacial properties is drastically affected by the inhomogeneous screening if the bulk Debye screening length is comparable or smaller than the Bjerrum length. The width of the depletion layer is characterized by the Bjerrum length, independent of the salt concentration. We predict that the negative adsorption of ions at the interface increases linearly with the salt concentration, which cannot be captured by either the bulk screening approximation or the WKB approximation. For asymmetric salt, the inhomogeneous screening enhances the charge separation in the induced double layer and significantly increases the value of the surface potential.

Finally, to account for the ion specificity, we study the self energy of a single ion across the dielectric interface. The ion is considered to be polarizable: its charge distribution can be self-adjusted to the local dielectric environment to minimize the self energy. Using intrinsic parameters of the ions, such as the valency, radius, and polarizability, we predict the specific ion effect on the interfacial affinity of halogen anions at the water/air interface, and the strong adsorption of hydrophobic ions at the water/oil interface, in agreement with experiments and atomistic simulations.

The theory developed in this work represents the most systematic theoretical technique for weak-coupling electrolytes. We expect the theory to be more useful for studying a wide range of structural and dynamic properties in physicochemical, colloidal, soft-matter and biophysical systems.