995 resultados para Electron Loss
Resumo:
Background and Purpose: The right kidney has been less frequently used in live donor nephrectomy, because of the shorter length of the right renal vein (RRV) that is associated with technical difficulties and higher rates of venous thrombosis. In live open donor or deceased donor transplant nephrectomy, an additional cuff of the inferior vena cava is usually removed, but this is a more difficult and risky maneuver in laparoscopic nephrectomy. For this reason, laparoscopic right nephrectomy (LRN) for renal transplantation (RT) is not frequently performed in most medical institutions. We evaluate the difference between RRV and left renal vein (LRV) lengths in cadavers, as harvested for RT by three clamping methods. Our objective was to obtain information that could clarify when LRN for RT should be encouraged or avoided with regard to conventional surgery. Materials and Methods: Ninety adult fresh unfrozen cadavers were randomly divided into three groups of 30, according to the clamping device used: Satinsky, stapler, and Hem-o-lok clip. The abdominal viscera were removed through a median xyphopubic incision, and the veins were measured on the bench. Two lateral limits were used: The renal hilum and the tangential line of the renal poles. As for medial limits, the inferior vena cava or the laparoscopic clipping device on the RRV were used on the right side, while on the LRV, the medial border of the emergence of the adrenal vein was considered. After section of the renal vein, a slight traction of the extremity was applied for the measurement. All measurements were obtained three times using a metallic millimetric ruler, and the arithmetic mean was considered. The chi-square, one-way analysis of variance, and paired t tests were used for statistical analysis. Statistical significance was accepted at P <= 0.05. Results: The groups of cadavers were homogeneous in demographic characteristics. Regardless of the clamping method and considering the useful length of the LRV, the RRV was statistically smaller. The evaluation of the vein length did not depend on the lateral limit considered. Independent of the clamping method, on both sides, the lengths after the vein section were larger than before the section, a fact attributed to traction. Use of a stapler and a single Hem-o-lok presented the same waste of vein length on the right side. On average, the RRV was 13.7% shorter than the LRV. Conclusions: With the wide acceptance of laparoscopic live donor nephrectomy, the length difference between the veins of both kidneys is an important issue, and the right kidney is therefore used less than the left, compared with conventional surgery. This article represents the first step to quantify the anatomic length of renal veins in different situations. Certainly, more imagenologic or surgical studies should be carried out before decisions can be made for better selection of patients for LRN.
Resumo:
Objective: This study investigated the effects of low-level laser therapy (LLLT) and electrical stimulation (ES) on bone loss in spinal cord-injured rats. Materials and Methods: Thirty-seven male Wistar rats were divided into four groups: standard control group (CG); spinal cord-injured control (SC); spinal cord-injured treated with laser (SCL; GaAlAs, 830 nm, CW, 30mW/cm, 250 J/cm(2)); and spinal cord-injured treated with electrical field stimulation (SCE; 1.5 MHz, 1: 4 duty cycles, 30 mW, 20 min). Biomechanical, densitometric, and morphometric analyses were performed. Results: SC rats showed a significant decrease in bone mass, biomechanical properties, and morphometric parameters (versus CG). SCE rats showed significantly higher values of inner diameter and internal and external areas of tibia diaphyses; and the SCL group showed a trend toward the same result (versus SC). No increase was found in either mechanical or densitometric parameters. Conclusion: We conclude that the mentioned treatments were able to initiate a positive bone-tissue response, maybe through stimulation of osteoblasts, which was able to determine the observed morphometric modifications. However, the evoked tissue response could not determine either biomechanical or densitometric modifications.
Resumo:
The objective of this study was to characterize acrosomal ultrastructure following discontinuous Percoll gradient centrifugation of cryopreserved bovine sperm. Semen was collected from six bulls of different breeds and three ejaculates per bull were evaluated. Frozen semen samples were thawed and the acrosomal region of sperm cells was evaluated by transmission electron microscopy (TEM) before (n = 18) and after (n = 18) Percoll centrifugation. The evaluation of 20 sperm heads from each of the 36 samples analyzed ensured that a large number of cells were investigated. The data were subjected to analysis of variance at a level of significance of 5%. Percoll centrifugation reduced the percentage of sperm exhibiting normal acrosomes (from 61.77 to 30.24%), reduced the percentage of sperm presenting atypical acrosome reactions (from 28.38 to 4.84%) and increased the percentage of sperm exhibiting damage in the acrosome (from 6.14 to 64.26%). The percentage of sperm with typical acrosome reactions was not significantly different before (3.70%) and after (0.67%) centrifugation. TEM distinguished four different types of acrosomal status and enabled ultrastructural characterization of acrosomal injuries. The percentage of sperm exhibiting normal acrosomes decreased and damage in the acrosome was the most frequent acrosomal injury with the Percoll gradient centrifugation protocol utilized.
Resumo:
Objective: This in vitro study aimed to analyze the influence of neodymium-doped yttrium aluminum garnet (Nd:YAG) laser irradiation on the efficacy of titanium tetrafluoride (TiF(4)) and sodium fluoride (NaF) varnishes and solutions to protect enamel against erosion. Background data: The effect of Nd:YAG laser irradiation on NaF and AmF was analyzed; however, there is no available data on the interaction between Nd:YAG laser irradiation and TiF(4). Methods: Bovine enamel specimens were pre-treated with NaF varnish, TiF(4) varnish, NaF solution, TiF(4) solution, placebo varnish, Nd:YAG (84.9 J/cm(2)), Nd:YAG prior to or through NaF varnish, Nd:YAG prior to or through TiF(4) varnish, Nd:YAG prior to or through NaF solution, Nd:YAG prior to or through TiF(4) solution, and Nd:YAG prior to or through placebo varnish. Controls remained untreated. Ten specimens in each group were then subjected to an erosive demineralization (Sprite Zero, 4x90 s/day) and remineralization (artificial saliva, between the erosive cycles) cycling for 5 days. Enamel loss was measured profilometrically (mu m). Additionally, treated but non-eroded specimens were additionally analyzed by scanning electron microscope (SEM) (each group n-2). The data were statistically analyzed by ANOVA and Tukey's post-hoc test (p < 0.05). Results: Only TiF(4) varnish (1.8 +/- 0.6 mu m), laser prior to TiF(4) varnish (1.7 +/- 0.3 mu m) and laser prior to TiF(4) solution (1.4 +/- 0.3 mu m) significantly reduced enamel erosion compared to the control (4.1 +/- 0.6 mu m). SEM pictures showed that specimens treated with TiF(4) varnish presented a surface coating. Conclusions: Nd:YAG laser irradiation was not effective against enamel erosion and it did not have any influence on the efficacy of F, except for TiF(4) solution. On the other hand, TiF(4) varnish protected against enamel erosion, without the influence of laser irradiation.
Resumo:
Objective: This in vitro study aimed to analyze the influence of carbon dioxide (CO(2)) laser irradiation on the efficacy of titanium tetrafluoride (TiF(4)) and amine fluoride (AmF) in protecting enamel and dentin against erosion. Methods: Bovine enamel and dentin samples were pretreated with carbon dioxide (CO(2)) laser irradiation only (group I), TiF(4) only (1% F, group II), CO(2) laser irradiation before (group III) or through (group IV) TiF(4) application, AmF only (1% F, group V), or CO(2) laser irradiation before (group VI) or through (group VII) AmF application. Controls remained untreated. Ten samples of each group were then subjected to an erosive demineralization and remineralization cycling for 5 days. Enamel and dentin loss were measured profilometrically after pretreatment, 4 cycles (1 day), and 20 cycles (5 days) and statistically analyzed using analysis of variance and Scheffe's post hoc tests. Scanning electron microscopy (SEM) analysis was performed in pretreated but not cycled samples (two samples each group). Results: After 20 cycles, there was significantly less enamel loss in groups V and IV and significantly less dentin loss in group V only. All other groups were not significantly different from the controls. Lased surfaces (group I) appeared unchanged in the SEM images, although SEM images of enamel but not of dentin showed that CO(2) laser irradiation affected the formation of fluoride precipitates. Conclusion: AmF decreased enamel and dentin erosion, but CO(2) laser irradiation did not improve its efficacy. TiF(4) showed only a limited capacity to prevent erosion, but CO(2) laser irradiation significantly enhanced its ability to reduce enamel erosion.
Resumo:
Objective: In this study we evaluated the ablation rate of superficial and deep dentin irradiated with different Er:YAG laser energy levels, and observed the micromorphological aspects of the lased substrates with a scanning electron microscope (SEM). Background Data: Little is known about the effect of Er: YAG laser irradiation on different dentin depths. Materials and Methods: Sixty molar crowns were bisected, providing 120 specimens, which were randomly assigned into two groups ( superficial or deep dentin), and later into five subgroups (160, 200, 260, 300, or 360 mJ). Initial masses of the specimens were obtained. After laser irradiation, the final masses were obtained and mass losses were calculated followed by the preparation of specimens for SEM examination. Mass-loss values were subjected to two-way ANOVA and Fisher's least significant difference multiple-comparison tests (p < 0.05). Results: There was no difference between superficial and deep dentin. A significant and gradual increase in the mass-loss values was reached when energies were raised, regardless of the dentin depth. The energy level of 360 mJ showed the highest values and was statistically significantly different from the other energy levels. The SEM images showed that deep dentin was more selectively ablated, especially intertubular dentin, promoting tubule protrusion. At 360 mJ the micromorphological features were similar for both dentin depths. Conclusion: The ablation rate did not depend on the depth of the dentin, and an energy level lower than 360 mJ is recommended to ablate both superficial and deep dentin effectively without causing tissue damage.
Resumo:
Objective: The purpose of this study was to evaluate the ablation capacity of different energies and pulse repetition rates of Er:YAG laser energy on primary molar enamel, by assessing mass loss and by analyzing the surface morphology with scanning electron microscopy. Background Data: Previous studies have demonstrated the capacity of the Er:YAG laser to ablate enamel substrate. Methods: Forty-two sound primary molars were bisected in a mesiodistal direction. The enamel surfaces were flattened and their initial mass (in milligrams) was obtained. An area of 4 mm(2) was delimited. The specimens were randomly assigned to 12 groups according to the combination of energy (160, 200, 250, and 300 mJ) and pulse repetition rate (2, 3, and 4 Hz). Er: YAG laser irradiation was performed on each specimen for 20 sec. After irradiation, the final mass was obtained and specimens were prepared for examination with scanning electron microscopy. The data obtained by subtracting the final mass from the initial mass were statistically analyzed using ANOVA and the Tukey test (p < 0.05). Results: The pulse repetition rate of 4 Hz provided greater mass loss, different from that seen with 2 Hz, and similar to that seen with 3 Hz. The energy level of 300 mJ resulted in greater mass loss, similar to that seen with 200 and 250 mJ. Scanning electron photomicrographs showed that there was non-selective enamel removal, with fused and cracked areas in all specimens. Conclusion: The parameters of 200 mJ and 2 Hz produced a good ablation rate with fewer surface alterations in primary molar enamel.
Resumo:
Strangelets arriving from the interstellar medium are an interesting target for experiments searching for evidence of this hypothetical state of hadronic matter. We entertain the possibility of a trapped strangelet population, quite analogous to ordinary nuclei and electron belts. For a population of strangelets to be trapped by the geomagnetic field, these incoming particles would have to fulfill certain conditions, namely, having magnetic rigidities above the geomagnetic cutoff and below a certain threshold for adiabatic motion to hold. We show in this work that, for fully ionized strangelets, there is a narrow window for stable trapping. An estimate of the stationary population is presented and the dominant loss mechanisms discussed. It is shown that the population would be substantially enhanced with respect to the interstellar medium flux (up to 2 orders of magnitude) due to quasistable trapping.
Resumo:
Objective: To evaluate the potential of 980-nm gallium aluminum arsenide (GaAlAs) and 1064-nm neodymium-doped yttrium aluminum garnet (Nd:YAG) lasers to reduce bacteria after irradiation of implant surfaces contaminated with Enterococcus faecalis and Porphyromonas gingivalis and on irradiated implant surface morphology. Background: Despite the frequency of implant success, some implant loss is related to peri-implantitis because of difficulty in eliminating the biofilm. Methods: Implants (3.75 x 13 mm) with machined surfaces, surfaces sand blasted with titanium oxide (TiO(2)), and sand-blasted and acid-etched surfaces were exposed to P. gingivalis and E. faecalis cultures and irradiated with 980-nm GaAlAs or 1064-nm Nd: YAG lasers. After laser treatments, the number of remaining colony-forming units and implant surface morphology were analyzed using scanning electron microscopy (SEM). Results: The Nd: YAG laser was able to promote a total contamination reduction on all implants irradiated. The results with the GaAlAs laser showed 100% bacteria reduction on the implants irradiated with 3 W. Irradiation with 2.5 W and 3 W achieved 100% of bacteria reduction on P. gingivalis-contaminated implants. Decontamination was not complete for the sand-blasted TiO(2) (78.6%) and acid-etched surfaces (49.4%) contaminated with E. faecalis and irradiated with 2.5 W. SEM showed no implant surface changes. Conclusion: The wavelengths used in this research provided bacteria reduction without damaging implant surfaces. New clinical research should be encouraged for the use of this technology in the treatment of peri-implantitis.
Resumo:
We present the first simultaneous measurements of the Thomson scattering and electron cyclotron emission radiometer diagnostics performed at TCABR tokamak with Alfven wave heating. The Thomson scattering diagnostic is an upgraded version of the one previously installed at the ISTTOK tokamak, while the electron cyclotron emission radiometer employs a heterodyne sweeping radiometer. For purely Ohmic discharges, the electron temperature measurements from both diagnostics are in good agreement. Additional Alfven wave heating does not affect the capability of the Thomson scattering diagnostic to measure the instantaneous electron temperature, whereas measurements from the electron cyclotron emission radiometer become underestimates of the actual temperature values. (C) 2010 American Institute of Physics. [doi:10.1063/1.3494379]
Resumo:
This paper reports results from a search for nu(mu) -> nu(e) transitions by the MINOS experiment based on a 7 x 10(20) protons-on-target exposure. Our observation of 54 candidate nu(e) events in the far detector with a background of 49.1 +/- 7.0(stat) +/- 2.7(syst) events predicted by the measurements in the near detector requires 2sin(2)(2 theta(13))sin(2)theta(23) < 0.12(0.20) at the 90% C.L. for the normal (inverted) mass hierarchy at delta(CP) = 0. The experiment sets the tightest limits to date on the value of theta(13) for nearly all values of delta(CP) for the normal neutrino mass hierarchy and maximal sin(2)(2 theta(23)).
Resumo:
Heavy quark production has been very well studied over the last years both theoretically and experimentally. Theory has been used to study heavy quark production in ep collisions at HERA, in pp collisions at Tevatron and RHIC, in pA and dA collisions at RHIC, and in AA collisions at CERN-SPS and RHIC. However, to the best of our knowledge, heavy quark production in eA has received almost no attention. With the possible construction of a high energy electron-ion collider, updated estimates of heavy quark production are needed. We address the subject from the perspective of saturation physics and compute the heavy quark production cross section with the dipole model. We isolate shadowing and nonlinear effects, showing their impact on the charm structure function and on the transverse momentum spectrum.
Resumo:
This Letter reports on a search for nu(mu)->nu(e) transitions by the MINOS experiment based on a 3.14x10(20) protons-on-target exposure in the Fermilab NuMI beam. We observe 35 events in the Far Detector with a background of 27 +/- 5(stat)+/- 2(syst) events predicted by the measurements in the Near Detector. If interpreted in terms of nu(mu)->nu(e) oscillations, this 1.5 sigma excess of events is consistent with sin(2)(2 theta(13)) comparable to the CHOOZ limit when |Delta m(2)|=2.43x10(-3) eV(2) and sin(2)(2 theta(23))=1.0 are assumed.
Resumo:
We calculate the nuclear cross section for coherent and incoherent vector meson production within the QCD color dipole picture, including saturation effects. Theoretical estimates for scattering on both light and heavy nuclei are given over a wide range of energy.
Resumo:
An experiment was conducted to observe triple- and quadruple-escape peaks, at a photon energy equal to 6.128 MeV, in the spectra recorded with a high-purity Ge detector working in coincidence with six bismuth germanate detectors. The peak intensities may be explained having recourse to only the bremsstrahlung cascade process of consecutive electron-positron pair creation; i.e., the contribution of simultaneous double pair formation (and other cascade effects) is much smaller. The experimental peak areas are in reasonably good agreement with those predicted by Monte Carlo simulations done with the general-purpose radiation-tran sport code PENELOPE.