984 resultados para Electrical machine
Resumo:
The paper presents a vector model for a Brushless Doubly-Fed Machine (BDFM). The BDFM has 4 and 8 pole stator windings and a nested-loop rotor cage. The rotor cage has six nests equally spaced around the circumference and each nest comprises three loops. All the rotor loops are short circuited via a common end-ring at one end. The vector model is derived based on the electrical equations of the machine and appropriate vector transformations. In contrast to the stator, there is no three phase circuit in the rotor. Therefore, the vector transformations suitable for three phase circuits can not be utilised for the rotor circuit. A new vector transformation is employed for the rotor circuit quantities. The approach presented in this paper can be extended for a BDFM with any stator poles combination and any number of loops per nest. Simulation results from the model implemented in Simulink are presented. © 2008 IEEE.
Resumo:
The grading of crushed aggregate is carried out usually by sieving. We describe a new image-based approach to the automatic grading of such materials. The operational problem addressed is where the camera is located directly over a conveyor belt. Our approach characterizes the information content of each image, taking into account relative variation in the pixel data, and resolution scale. In feature space, we find very good class separation using a multidimensional linear classifier. The innovation in this work includes (i) introducing an effective image-based approach into this application area, and (ii) our supervised classification using wavelet entropy-based features.
Resumo:
The in-line measurement of COD and NH4-N in the WWTP inflow is crucial for the timely monitoring of biological wastewater treatment processes and for the development of advanced control strategies for optimized WWTP operation. As a direct measurement of COD and NH4-N requires expensive and high maintenance in-line probes or analyzers, an approach estimating COD and NH4-N based on standard and spectroscopic in-line inflow measurement systems using Machine Learning Techniques is presented in this paper. The results show that COD estimation using Radom Forest Regression with a normalized MSE of 0.3, which is sufficiently accurate for practical applications, can be achieved using only standard in-line measurements. In the case of NH4-N, a good estimation using Partial Least Squares Regression with a normalized MSE of 0.16 is only possible based on a combination of standard and spectroscopic in-line measurements. Furthermore, the comparison of regression and classification methods shows that both methods perform equally well in most cases.
Resumo:
Process monitoring and Predictive Maintenance (PdM) are gaining increasing attention in most manufacturing environments as a means of reducing maintenance related costs and downtime. This is especially true in industries that are data intensive such as semiconductor manufacturing. In this paper an adaptive PdM based flexible maintenance scheduling decision support system, which pays particular attention to associated opportunity and risk costs, is presented. The proposed system, which employs Machine Learning and regularized regression methods, exploits new information as it becomes available from newly processed components to refine remaining useful life estimates and associated costs and risks. The system has been validated on a real industrial dataset related to an Ion Beam Etching process for semiconductor manufacturing.
Resumo:
The structure and properties of melt mixed high-density polyethylene/multi-walled carbon nanotube (HDPE/MWCNT) composites processed by compression molding and blown film extrusion were investigated to assess the influence of processing route on properties. The addition of MWCNTs leads to a more elastic response during deformations that result in a more uniform thick-ness distribution in the blown films. Blown film composites exhibit better mechanical properties due to the enhanced orientation and disentanglement of MWCNTs. At a blow up ratio (BUR) of 3 the breaking strength and elongation in the machine direction of the film with 4 wt % MWCNTs are 239% and 1054% higher than those of compression molded (CM) samples. Resistivity of the composite films increases significantly with increasing BURs due to the destruction of conductive pathways. These pathways can be recovered partially using an appropriate annealing process. At 8 wt % MWCNTs, there is a sufficient density of nanotubes to maintain a robust network even at high BURs.
Resumo:
Retinopathy of prematurity (ROP) is a rare disease in which retinal blood vessels of premature infants fail to develop normally, and is one of the major causes of childhood blindness throughout the world. The Discrete Conditional Phase-type (DC-Ph) model consists of two components, the conditional component measuring the inter-relationships between covariates and the survival component which models the survival distribution using a Coxian phase-type distribution. This paper expands the DC-Ph models by introducing a support vector machine (SVM), in the role of the conditional component. The SVM is capable of classifying multiple outcomes and is used to identify the infant's risk of developing ROP. Class imbalance makes predicting rare events difficult. A new class decomposition technique, which deals with the problem of multiclass imbalance, is introduced. Based on the SVM classification, the length of stay in the neonatal ward is modelled using a 5, 8 or 9 phase Coxian distribution.
Resumo:
With the availability of a wide range of cloud Virtual Machines (VMs) it is difficult to determine which VMs can maximise the performance of an application. Benchmarking is commonly used to this end for capturing the performance of VMs. Most cloud benchmarking techniques are typically heavyweight - time consuming processes which have to benchmark the entire VM in order to obtain accurate benchmark data. Such benchmarks cannot be used in real-time on the cloud and incur extra costs even before an application is deployed.
In this paper, we present lightweight cloud benchmarking techniques that execute quickly and can be used in near real-time on the cloud. The exploration of lightweight benchmarking techniques are facilitated by the development of DocLite - Docker Container-based Lightweight Benchmarking. DocLite is built on the Docker container technology which allows a user-defined portion (such as memory size and the number of CPU cores) of the VM to be benchmarked. DocLite operates in two modes, in the first mode, containers are used to benchmark a small portion of the VM to generate performance ranks. In the second mode, historic benchmark data is used along with the first mode as a hybrid to generate VM ranks. The generated ranks are evaluated against three scientific high-performance computing applications. The proposed techniques are up to 91 times faster than a heavyweight technique which benchmarks the entire VM. It is observed that the first mode can generate ranks with over 90% and 86% accuracy for sequential and parallel execution of an application. The hybrid mode improves the correlation slightly but the first mode is sufficient for benchmarking cloud VMs.
Resumo:
An indoor rowing machine has been modified for functional electrical stimulation (FES) assisted rowing exercise in paraplegia. To perform the rowing manoeuvre successfully, however, the voluntarily controlled upper body movements must be co-ordinated with the movements of the electrically stimulated paralysed legs. To achieve such co-ordination, an automatic FES controller was developed that employs two levels of hierarchy. At the upper level, a finite state controller identifies the state or phase of the rowing cycle and activates the appropriate lower-level controller, in which electrical stimulation to the paralysed leg muscles is applied with reference to switching curves representing the desired seat velocity as a function of the seat position. In a pilot study, the hierarchical control of FES rowing was shown to be intuitive, reliable and easy to use. Compared with open-loop control of stimulation, all three variants of the closed-loop switching curve controllers used less muscle stimulation per rowing cycle (73% of the open-loop control on average). Further, the closed-loop controller that used switching curves derived from normal rowing kinematics used the lowest muscle stimulation (65% of the open-loop control) and was the most convenient to use for the client.
Resumo:
Species` potential distribution modelling consists of building a representation of the fundamental ecological requirements of a species from biotic and abiotic conditions where the species is known to occur. Such models can be valuable tools to understand the biogeography of species and to support the prediction of its presence/absence considering a particular environment scenario. This paper investigates the use of different supervised machine learning techniques to model the potential distribution of 35 plant species from Latin America. Each technique was able to extract a different representation of the relations between the environmental conditions and the distribution profile of the species. The experimental results highlight the good performance of random trees classifiers, indicating this particular technique as a promising candidate for modelling species` potential distribution. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The aim of the work was to study the effect of milking fraction on electrical conductivity of milk (EC) to improve its use in dairy goat mastitis detection using automatic EC measurements during milking. The experiment was carried out on a group of 84 Murciano-Granadina goats (28 primiparous and 56 multiparous). Goats were in the fourth month of lactation. A linear mixed model was used to analyse the relationship between EC or somatic cell count (SCC) of gland milk and parity, mammary gland health status, analysed fraction (first 100 mL=F-1; machine milk=F-2; and stripping milk=F-3) and their first order interactions. Additionally, the mastitis detection characteristics (sensitivity, specificity, positive predictive value and negative predictive value) of SCC and EC were studied at different thresholds.All factors considered were significant for EC and SCC. EC decreased significantly as milking progressed (from F-1 to F-3) in both healthy and infected glands. EC was not significantly different between healthy and infected glands in F-1 and F-2 fractions, but EC of healthy glands (5.01 mS/cm) was significantly lower than in infected glands (5.03 mS/cm) at F-3.Mastitis detection characteristics of EC did not differ amongst studied fractions. The small significant difference of EC between healthy and infected glands obtained in F-3 fraction did not yield better sensitivity results compared to F-1 and F-2. The best EC mastitis detection characteristics were obtained at 5.20 mS/cm threshold (sensitivity of 70% and specificity of 50%). The best SCC mastitis detection characteristics were obtained at 300,000 cells/mL threshold and F-3 fraction (sensitivity of 85% and specificity of 65%).It was concluded that mastitis detection characteristics of EC were similar in the three milking fractions analysed, being slightly better for SCC in F-3 fraction. As shown in previous studies, there are no factors other than the mammary gland health status that affect milk EC and should be considered in the algorithms for mastitis detection to improve the results. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
This work aims to present the design and the evaluation of a standard multi-pole machine with permanent magnets inserted in the rotor by two different geometrical forms: aligned and skewed magnets. The design (new analytical method) was based on a standard 250 W three phase 12-pole induction motor (squirrel cage rotor type), beginning with the original stator constructive data to calculate the magnetic flux density to determine the permanent magnets. In the development of the work, a simple and modular rotor was built reusing the original 12-pole stator (concentrated windings). The machine was evaluated in a laboratory for the purpose of checking the quantity and quality of energy produced with the machine operating as a generator and its start, torque, and performance working as a motor. In conclusion, the modular skewed magnet is an option for electrical machines, for the generation of a reasonable quality, in the context of decentralized generation and a motor with high torque and low energetic consumption.
Resumo:
This work presents a methodology to analyze transient stability for electric energy systems using artificial neural networks based on fuzzy ARTMAP architecture. This architecture seeks exploring similarity with computational concepts on fuzzy set theory and ART (Adaptive Resonance Theory) neural network. The ART architectures show plasticity and stability characteristics, which are essential qualities to provide the training and to execute the analysis. Therefore, it is used a very fast training, when compared to the conventional backpropagation algorithm formulation. Consequently, the analysis becomes more competitive, compared to the principal methods found in the specialized literature. Results considering a system composed of 45 buses, 72 transmission lines and 10 synchronous machines are presented. © 2003 IEEE.
Resumo:
A possible way for increasing the cutting tool life can be achieved by heating the workpiece in order to diminish the shear stress of material and thus decrease the machining forces. In this study, quartz electrical resistances were set around the workpiece for heating it during the turning. In the tests, heat-resistant austenitic alloy steel was used, hardenable by precipitation, mainly used in combustion engine exhaustion valves, among other special applications for industry. The results showed that in the hot machining the cutting tool life can be increased by 340% for the highest cutting speed tested and had a reduction of 205% on workpiece surface roughness, accompanied by a force decrease in relation to conventional turning. In addition, the chips formed in hot turning exhibited a stronger tendency to continuous chip formation indicating less energy spent in material removal process. Microhardness tests performed in the workpieces subsurface layers at 5 m depth revealed slightly higher values in the hot machining than in conventional, showing a tendency toward the formation of compressive residual stress into plastically deformed layer. The hot turning also showed better performance than machining using cutting fluid. Since it is possible to avoid the use of cutting fluid, this machining method can be considered better for the environment and for the human health.