973 resultados para Ecological indicators
Resumo:
The polychaetes assemblage structure was used in order to investigate taxonomic sufficiency in a heavily polluted tropical bay. Species abundance was aggregated into progressively higher taxa matrices (genus, family, order) and was analyzed using univariate and multivariate techniques. Polychaetes distribution in Guanabara Bay (GB) was in accordance with a pollution gradient, probably ruled by the organic enrichment, consequent effects of hypoxia and altered redox conditions coupled with prevailing patterns of circulation. Within the sectors of GB, an increasing gradient in species richness and occurrence was observed, ranging from the azoic and impoverished stations in the inner sector to a well-structured community in terms of species composition and abundance inhabiting the outer sector. Multivariate statistical analysis showed similar results when species were aggregated into genera and families, while greater difference occurred at coarser taxonomic identification (order). The literature about taxonomic sufficiency has demonstrated that faunal patterns at different taxonomic levels tend to become similar with increased pollution. In GB, an analysis carried out solely at family level is perfectly adequate to describe the environmental gradient, considered a useful tool for a quick environmental assessment. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
The amphipod fauna was employed to investigate a bottom environmental gradient in the continental shelf adjacent to Santos Bay. The constant flow of less saline water from the estuarine complex of the Santos and São Vicente rivers besides the seasonal intrusion of the cold saline South Atlantic Central Water (SACW) bring a highly dynamic water regime to the area. Density, distribution, diversity and functional structure of the communities were studied on a depth gradient from 10 to 100 m on two cruises in contrasting seasons, winter 2005 and summer 2006. Twenty-one sediment samples were taken with a 0.09m² box corer. Temperature and salinity were measured at each station and an additional surface sediment sample was obtained with the box corer for granulometric and chemical analyses. Sixty species were collected on each survey and higher density values were found in summer. A priori one-way Analysis of Similarities (ANOSIM) indicated the existence of three different groups of amphipods related to the depth gradient: the Coastal group, the Mixed Zone group and the Deep Zone group. The Coastal Zone in both cruises was inhabited by a community presenting low diversity and density, besides high dominance of the infaunal tube-dweller Ampelisca paria; the area around 30 m presented the highest values of all the ecological indicators and the species showed several life styles; the outer area, situated between 50 and 100 m depth in the SACW domain, presented a community characterized by lower diversity and high biomass and density values. A season-depth ANOSIM showed the influence of depth and season for the Coastal and Mixed Zone groups whereas no seasonal difference was obtained for the Deep Zone group. The synergistic effect of the SACW and depth in the first place, followed by physical changes in substrate, seem to be the main factors controlling the fauna's distribution. In addition, the estuarine waters from Santos Bay apparently had no effect on the establishment of the environmental gradient observed on the adjacent shelf. Diversity, distribution, functional groups and trophic conditions of superficial sediments are discussed in the light of the main oceanographic processes present on the southern Brazilian shelf.
Resumo:
Despite numerous research efforts over the last decades, integrating the concept of ecosystem servicesinto land management decision-making continues to pose considerable challenges. Researchers havedeveloped many different frameworks to operationalize the concept, but these are often specific to acertain issue and each has their own definitions and understandings of particular terms. Based on acomprehensive review of the current scientific debate, the EU FP7 project RECARE proposes an adaptedframework for soil-related ecosystem services that is suited for practical application in the preventionand remediation of soil degradation across Europe. We have adapted existing frameworks by integratingcomponents from soil science while attempting to introduce a consistent terminology that is understand-able to a variety of stakeholders. RECARE aims to assess how soil threats and prevention and remediationmeasures affect ecosystem services. Changes in the natural capital’s properties influence soil processes,which support the provision of ecosystem services. The benefits produced by these ecosystem servicesare explicitly or implicitly valued by individuals and society. This can influence decision- and policymak-ing at different scales, potentially leading to a societal response, such as improved land management.The proposed ecosystem services framework will be applied by the RECARE project in a transdisciplinaryprocess. It will assist in singling out the most beneficial land management measures and in identifyingtrade-offs and win–win situations resulting from and impacted by European policies. The framework thusreflects the specific contributions soils make to ecosystem services and helps reveal changes in ecosystemservices caused by soil management and policies impacting on soil. At the same time, the framework issimple and robust enough for practical application in assessing soil threats and their management withstakeholders at various levels.
Resumo:
There is a long tradition of river monitoring using macroinvertebrate communities to assess environmental quality in Europe. A promising alternative is the use of species life-history traits. Both methods, however, have relied on the time-consuming identification of taxa. River biotopes, 1-100 m**2 'habitats' with associated species assemblages, have long been seen as a useful and meaningful way of linking the ecology of macroinvertebrates and river hydro-morphology and can be used to assess hydro-morphological degradation in rivers. Taxonomic differences, however, between different rivers had prevented a general test of this concept until now. The species trait approach may overcome this obstacle across broad geographical areas, using biotopes as the hydro-morphological units which have characteristic species trait assemblages. We collected macroinvertebrate data from 512 discrete patches, comprising 13 river biotopes, from seven rivers in England and Wales. The aim was to test whether river biotopes were better predictors of macroinvertebrate trait profiles than taxonomic composition (genera, families, orders) in rivers, independently of the phylogenetic effects and catchment scale characteristics (i.e. hydrology, geography and land cover). We also tested whether species richness and diversity were better related to biotopes than to rivers. River biotopes explained 40% of the variance in macroinvertebrate trait profiles across the rivers, largely independently of catchment characteristics. There was a strong phylogenetic signature, however. River biotopes were about 50% better at predicting macroinvertebrate trait profiles than taxonomic composition across rivers, no matter which taxonomic resolution was used. River biotopes were better than river identity at explaining the variability in taxonomic richness and diversity (40% and <=10%, respectively). Detailed trait-biotope associations agreed with independent a priori predictions relating trait categories to near river bed flows. Hence, species traits provided a much needed mechanistic understanding and predictive ability across a broad geographical area. We show that integration of the multiple biological trait approach with river biotopes at the interface between ecology and hydro-morphology provides a wealth of new information and potential applications for river science and management.
Resumo:
The first data set contains the mean and cofficient of variation (standard deviation divided by mean) of a multi-frequency indicator I derived from ER60 acoustic information collected at five frequencies (18, 38, 70, 120, and 200 kHz) in the Bay of Biscay in May of the years 2006, 2008, 2009 and 2010 (Pelgas surveys). The multi-frequency indicator was first calculated per voxel (20 m long × 5 m deep sampling unit) and then averaged on a spatial grid (approx. 20 nm × 20 nm) for five 5-m depth layers in the surface waters (10-15m, 15-20m, 20-25m, 25-30m below sea surface); there are missing values in particular in the shallowest layer. The second data set provides for each grid cell and depth layer the proportion of voxels for which the multi-frequency indicator I was indicative of a certain group of organisms. For this the following interpretation was used: I < 0.39 swim bladder fish or large gas bubbles, I = 0.39-0.58 small resonant bubbles present in gas bearing organisms such as larval fish and phytoplankton, I = 0.7-0.8 fluidlike zooplankton such as copepods and euphausiids, and I > 0.8 mackerel. These proportions can be interpreted as a relative abundance index for each of the four organism groups.
Resumo:
The surroundings of the Cortiou sewage are among the most polluted environments of the French Mediterranean Sea (Marseilles, France). So far, no studies have precisely quantified the impact of pollution on the development of organisms in this area.Methods: We used a fluctuating asymmetry (FA) measure of developmental instability (DI) to assess environmental stress in two species of radially symmetric sea urchins (Arbacia lixula and Paracentrotus lividus). For six sampling sites (Cortiou, Riou, Maire, East Maire, Mejean, and Niolon), levels of FA were calculated from continuous and discrete skeletal measures of ambulacral length, number of pore pairs and primary tubercles.Results: For both species, the most polluted sampling site, Cortiou, displayed the highest level of FA, while the Maire and East Maire sampling sites displayed the lowest levels. A. lixula revealed systematic differences in FA among sampling sites for all characters and P. lividus showed differences in FA for the number of primary tubercles.Conclusions: Statistical analyses of FA show a concordance between the spatial patterns of FA among sampling sites and the spatial distribution of sewage discharge pollutants in the Cortiou area. High developmental stress in these sampling sites is associated with exposure to high concentrations of heavy metals and many harmful organic substances contained in wastewater. FA estimated from structures with complex symmetry appears to be a fast and reliable tool to detect subtle differences in FA. Its use in biomonitoring programs for inferring anthropogenic and natural environmental stress is suggested.
Resumo:
The selection of metrics for ecosystem restoration programs is critical for improving the quality of monitoring programs and characterizing project success. Moreover it is oftentimes very difficult to balance the importance of multiple ecological, social, and economical metrics. Metric selection process is a complex and must simultaneously take into account monitoring data, environmental models, socio-economic considerations, and stakeholder interests. We propose multicriteria decision analysis (MCDA) methods, broadly defined, for the selection of optimal sets of metrics to enhance evaluation of ecosystem restoration alternatives. Two MCDA methods, a multiattribute utility analysis (MAUT), and a probabilistic multicriteria acceptability analysis (ProMAA), are applied and compared for a hypothetical case study of a river restoration involving multiple stakeholders. Overall, the MCDA results in a systematic, unbiased, and transparent solution, informing restoration alternatives evaluation. The two methods provide comparable results in terms of selected metrics. However, because ProMAA can consider probability distributions for weights and utility values of metrics for each criteria, it is suggested as the best option if data uncertainty is high. Despite the increase in complexity in the metric selection process, MCDA improves upon the current ad-hoc decision practice based on the consultations with stakeholders and experts, and encourages transparent and quantitative aggregation of data and judgement, increasing the transparency of decision making in restoration projects. We believe that MCDA can enhance the overall sustainability of ecosystem by enhancing both ecological and societal needs.