906 resultados para EQUATION-ERROR MODELS
Resumo:
This paper considers forecasting the conditional mean and variance from a single-equation dynamic model with autocorrelated disturbances following an ARMA process, and innovations with time-dependent conditional heteroskedasticity as represented by a linear GARCH process. Expressions for the minimum MSE predictor and the conditional MSE are presented. We also derive the formula for all the theoretical moments of the prediction error distribution from a general dynamic model with GARCH(1, 1) innovations. These results are then used in the construction of ex ante prediction confidence intervals by means of the Cornish-Fisher asymptotic expansion. An empirical example relating to the uncertainty of the expected depreciation of foreign exchange rates illustrates the usefulness of the results. © 1992.
Resumo:
In this paper we present an empirical analysis of the residential demand for electricity using annual aggregate data at the state level for 48 US states from 1995 to 2007. Earlier literature has examined residential energy consumption at the state level using annual or monthly data, focusing on the variation in price elasticities of demand across states or regions, but has failed to recognize or address two major issues. The first is that, when fitting dynamic panel models, the lagged consumption term in the right-hand side of the demand equation is endogenous. This has resulted in potentially inconsistent estimates of the long-run price elasticity of demand. The second is that energy price is likely mismeasured.
Resumo:
PURPOSE: Low corneal hysteresis is associated with longer axial length in Chinese secondary school children. The authors sought to explore this association in primary school children. METHODS: LogMAR presenting visual acuity, cycloplegic refractive error, ocular biometry, central corneal thickness (CCT), and corneal hysteresis (CH) was assessed for children in grades 1 to 3 at an academically competitive urban school in Shantou, China. RESULTS: Among 872 eligible children (mean age, 8.6 ± 2.1 years), 651 (74.7%) completed the examination. Among 1299 examined eyes, 111 (8.5%) had uncorrected vision ≤6/12. Mean spherical equivalent refractive error for all eyes was +0.26 ± 1.41 D, and axial length (AL) was 22.7 ± 0.90 mm. CH for the lowest (mean AL, 21.7 ± 0.39 mm), two middle (mean AL, 22.4 ± 0.15 and 22.9 ± 0.15 mm), and highest quartiles (mean AL, 23.7 ± 0.74 mm) of AL were 10.6 ± 2.1 mm Hg, 10.4 ± 2.1 mm Hg, 10.3 ± 2.3 mm Hg, and 10.2 ± 2.3 mm Hg respectively (age- and gender-adjusted Pearson's correlation coefficient r = -0.052; P = 0.001). In generalized estimating equation models adjusting for age, gender, and CCT, lower CH was significantly associated with longer AL (P < 0.001) and more myopic refractive error (P = 0.001). CONCLUSIONS: CH measurement is practical in young children because this is when myopia undergoes its most rapid progression. Prospective follow-up of this cohort at high risk for myopia is under way to determine whether low CH is predictive, or a consequence, of long AL.
Resumo:
In this paper, we propose several finite-sample specification tests for multivariate linear regressions (MLR) with applications to asset pricing models. We focus on departures from the assumption of i.i.d. errors assumption, at univariate and multivariate levels, with Gaussian and non-Gaussian (including Student t) errors. The univariate tests studied extend existing exact procedures by allowing for unspecified parameters in the error distributions (e.g., the degrees of freedom in the case of the Student t distribution). The multivariate tests are based on properly standardized multivariate residuals to ensure invariance to MLR coefficients and error covariances. We consider tests for serial correlation, tests for multivariate GARCH and sign-type tests against general dependencies and asymmetries. The procedures proposed provide exact versions of those applied in Shanken (1990) which consist in combining univariate specification tests. Specifically, we combine tests across equations using the MC test procedure to avoid Bonferroni-type bounds. Since non-Gaussian based tests are not pivotal, we apply the “maximized MC” (MMC) test method [Dufour (2002)], where the MC p-value for the tested hypothesis (which depends on nuisance parameters) is maximized (with respect to these nuisance parameters) to control the test’s significance level. The tests proposed are applied to an asset pricing model with observable risk-free rates, using monthly returns on New York Stock Exchange (NYSE) portfolios over five-year subperiods from 1926-1995. Our empirical results reveal the following. Whereas univariate exact tests indicate significant serial correlation, asymmetries and GARCH in some equations, such effects are much less prevalent once error cross-equation covariances are accounted for. In addition, significant departures from the i.i.d. hypothesis are less evident once we allow for non-Gaussian errors.
Resumo:
In this paper, we propose exact inference procedures for asset pricing models that can be formulated in the framework of a multivariate linear regression (CAPM), allowing for stable error distributions. The normality assumption on the distribution of stock returns is usually rejected in empirical studies, due to excess kurtosis and asymmetry. To model such data, we propose a comprehensive statistical approach which allows for alternative - possibly asymmetric - heavy tailed distributions without the use of large-sample approximations. The methods suggested are based on Monte Carlo test techniques. Goodness-of-fit tests are formally incorporated to ensure that the error distributions considered are empirically sustainable, from which exact confidence sets for the unknown tail area and asymmetry parameters of the stable error distribution are derived. Tests for the efficiency of the market portfolio (zero intercepts) which explicitly allow for the presence of (unknown) nuisance parameter in the stable error distribution are derived. The methods proposed are applied to monthly returns on 12 portfolios of the New York Stock Exchange over the period 1926-1995 (5 year subperiods). We find that stable possibly skewed distributions provide statistically significant improvement in goodness-of-fit and lead to fewer rejections of the efficiency hypothesis.
Resumo:
Customer satisfaction and retention are key issues for organizations in today’s competitive market place. As such, much research and revenue has been invested in developing accurate ways of assessing consumer satisfaction at both the macro (national) and micro (organizational) level, facilitating comparisons in performance both within and between industries. Since the instigation of the national customer satisfaction indices (CSI), partial least squares (PLS) has been used to estimate the CSI models in preference to structural equation models (SEM) because they do not rely on strict assumptions about the data. However, this choice was based upon some misconceptions about the use of SEM’s and does not take into consideration more recent advances in SEM, including estimation methods that are robust to non-normality and missing data. In this paper, both SEM and PLS approaches were compared by evaluating perceptions of the Isle of Man Post Office Products and Customer service using a CSI format. The new robust SEM procedures were found to be advantageous over PLS. Product quality was found to be the only driver of customer satisfaction, while image and satisfaction were the only predictors of loyalty, thus arguing for the specificity of postal services
Resumo:
In the accounting literature, interaction or moderating effects are usually assessed by means of OLS regression and summated rating scales are constructed to reduce measurement error bias. Structural equation models and two-stage least squares regression could be used to completely eliminate this bias, but large samples are needed. Partial Least Squares are appropriate for small samples but do not correct measurement error bias. In this article, disattenuated regression is discussed as a small sample alternative and is illustrated on data of Bisbe and Otley (in press) that examine the interaction effect of innovation and style of use of budgets on performance. Sizeable differences emerge between OLS and disattenuated regression
Resumo:
Resumen tomado de la publicaci??n
Resumo:
Resumen tomado de la publicaci??n. Resumen tambi??n en ingl??s
Resumo:
Este documento estima modelos lineales y no-lineales de corrección de errores para los precios spot de cuatro tipos de café. En concordancia con las leyes económicas, se encuentra evidencia que cuando los precios están por encima de su nivel de equilibrio, retornan a éste mas lentamente que cuando están por debajo. Esto puede reflejar el hecho que, en el corto plazo, para los países productores de café es mas fácil restringir la oferta para incrementar precios, que incrementarla para reducirlos. Además, se encuentra evidencia que el ajuste es más rápido cuando las desviaciones del equilibrio son mayores. Los pronósticos que se obtienen a partir de los modelos de corrección de errores no lineales y asimétricos considerados en el trabajo, ofrecen una leve mejoría cuando se comparan con los pronósticos que resultan de un modelo de paseo aleatorio.
Resumo:
Nonlinear adjustment toward long-run price equilibrium relationships in the sugar-ethanol-oil nexus in Brazil is examined. We develop generalized bivariate error correction models that allow for cointegration between sugar, ethanol, and oil prices, where dynamic adjustments are potentially nonlinear functions of the disequilibrium errors. A range of models are estimated using Bayesian Monte Carlo Markov Chain algorithms and compared using Bayesian model selection methods. The results suggest that the long-run drivers of Brazilian sugar prices are oil prices and that there are nonlinearities in the adjustment processes of sugar and ethanol prices to oil price but linear adjustment between ethanol and sugar prices.