998 resultados para Dobutamine Stress Echocardiography
Resumo:
This study investigates the cardiac functioning in male Wistar rats after treatments with methionine and homocysteine thiolactone (HcyT). The rats were distributed into 3 groups and treated for 8 weeks. Group I was the control (CO) group, given water, group II was treated with methionine, and group III with HcyT (100 mg/kg). Morphometric and functional cardiac parameters were evaluated by echocardiography. Superoxide dismutase (SOD), catalase, and glutathione S-transferase activities, chemiluminescence, thiobarbituric acid reactive substances, and immunocontent were measured in the myocardium. Hyperhomocysteinemia was observed in rats submitted to the both treatments. The results showed diastolic function was compromised in HcyT group, seen by the increase of E/A (peak velocity of early (E) and late (A) diastolic filling) ratio, decrease in deceleration time of E wave and left ventricular isovolumic relaxation time. Myocardial performance index was increased in HcyT group and was found associated with increased SOD immunocontent. HcyT group demonstrated an increase in SOD, catalase, and glutatione S-transferase activity, and chemiluminescence and thiobarbituric acid reactive substances. Overall, these results indicated that HcyT induces a cardiac dysfunction and could be associated with oxidative stress increase in the myocardium.
Resumo:
1. A method for obtaining the end-systolic left ventricular (LV) pressure-diameter and stress-diameter relationships in man was critically analyzed.2. Pressure-diameter and stress-diameter relationships were determined throughout the cardiac cycle by combining standard LV manometry with M-mode echocardiography. Nine adult patients with heart disease and without heart failure were studied during intracardiac catheterization under three different conditions of arterial pressure, i.e., basal (B) condition (mean +/- SD systolic pressure, 102 +/- 10 mmHg) and two stable states of arterial hypertension (H(I), 121 +/- 12 mmHg; H(II), 147 +/- 17 mmHg) induced by venous infusion of phenylephrine after parasympathetic autonomic blockade with 0.04 mg/kg atropine.3. Significant reflex heart rate variation with arterial hypertension was observed (B, 115 +/- 20 bpm; H(I), 103 +/- 14 bpm; H(II), 101 +/- 13 bpm) in spite of the parasympathetic blockade with atropine. The linear end-systolic pressure-diameter and stress-diameter relationships ranged from 53.0 to 160.0 mmHg/cm and from 97.0 to 195.0 g/cm3, respectively.4. The end-systolic LV pressure-diameter and stress-diameter relationship lines presented high and variable slopes. The slopes, which are indicators of myocardial contractility, are susceptible to modifications by small deviations in the measurement of the ventricular diameter or by delay in the pressure curve recording.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Background: Chronic stress is associated with cardiac remodeling; however the mechanisms have yet to be clarified. Objective: The purpose of this study was test the hypothesis that chronic stress promotes cardiac dysfunction associated to L-type calcium Ca2+ channel activity depression. Methods: Thirty-day-old male Wistar rats (70 - 100 g) were distributed into two groups: control (C) and chronic stress (St). The stress was consistently maintained at immobilization during 15 weeks, 5 times per week, 1h per day. The cardiac function was evaluated by left ventricular performance through echocardiography and by ventricular isolated papillary muscle. The myocardial papillary muscle activity was assessed at baseline conditions and with inotropic maneuvers such as: post-rest contraction and increases in extracellular Ca2+ concentration, in presence or absence of specific blockers L-type calcium channels. Results: The stress was characterized for adrenal glands hypertrophy, increase of systemic corticosterone level and arterial hypertension. The chronic stress provided left ventricular hypertrophy. The left ventricular and baseline myocardial function did not change with chronic stress. However, it improved the response of the papillary muscle in relation to positive inotropic stimulation. This function improvement was not associated with the L-type Ca2+ channel. Conclusion: Chronic stress produced cardiac hypertrophy; however, in the study of papillary muscle, the positive inotropic maneuvers potentiated cardiac function in stressed rats, without involvement of L-type Ca2+ channel. Thus, the responsible mechanisms remain unclear with respect to Ca2+ influx alterations. (Arq Bras Cardiol 2012;99(4):907-914)
Resumo:
AIMS: In pressure overload left ventricular (LV) hypertrophy, gender-related differences in global LV systolic function have been previously reported. The goal of this study was to determine regional systolic function of the left ventricle in male and female patients with hypertensive heart disease. METHODS AND RESULTS: Regional LV function was analyzed from multiplane transesophageal echocardiography with three-dimensional (3D) reconstruction of the left ventricle. In 24 patients (13 males and 11 females), four parallel (2 basal and 2 apical) equidistant short axis cross-sections from base to apex were obtained from the reconstructed LV. In each short axis 24 wall-thickness measurements were carried out at 15 degrees intervals at end-diastole and end-systole. Thus, a total of 192 measurements were obtained in each patient. Wall thickening was calculated as difference of end-diastolic and end-systolic wall thickness, and fractional thickening as thickening divided by end-diastolic thickness. Fractional thickening and wall stress were inversely related to end-diastolic wall thickness in both, males and females. Females showed less LV systolic function when compared to males (p<0.001). However, when corrected for wall stress, which was higher in females, there was no gender difference in systolic function. CONCLUSION: There are regional differences in LV systolic function in females and males which are directly related to differences in wall stress. Thus, gender-related differences in LV regional function are load-dependent and not due to structural differences.
Resumo:
Impaired coronary flow reserve is widely reported in diabetes mellitus (DM) but its effect on myocardial contrast echocardiography (MCE) is unclear. We sought to identify whether DM influences the accuracy of qualitative and quantitative assessment of coronary artery disease (CAD) using MCE in 83 patients who underwent coronary angiography (60 men, 27 with DM; 56 +/- 11 years;). Destruction replenishment imaging was performed at rest and after combined dipyridamole-exercise stress testing. Ischemia was identified by the development of new wall motion abnormalities, qualitative MCE (new perfusion defects apparent 1 second after flash during hyperemia), and quantitative MCE (myocardial blood flow reserve < 2.0 in the anterior circulation). Qualitative and quantitative assessment of perfusion was feasible in 100% and 92% of patients, respectively. Significant left anterior descending coronary stenosis (> 50% by quantitative angiography) was present in 28 patients (including 8 with DM); 55 patients had no CAD (including 19 with DM). The myocardial blood flow reserve was reduced in patients with coronary stenosis compared with those with no CAD (1.6 +/- 1.1 vs 3.8 +/- 2.5, p < 0.001). Among patients with no CAD, those with DM had an impaired flow reserve compared with control patients without DM (2.4 +/- 1.0 vs 4.5 +/- 2.8, p = 0.003). In conclusion, DM significantly influenced the quantitative, but not the qualitative, assessment of MCE, with a marked reduction in specificity in patients with DM. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
We studied the relationship between brain natriuretic peptide (BNP) levels and viable myocardium and ischemic myocardium, regional scar and regional contractile function. Fifty-nine patients underwent dobutamine echocardiography and magnetic resonance imaging and resting BNP levels were determined. By magnetic resonance imaging, total extent of dysfunctional myocardium correlated strongest with BNP (r = 0.60, p < 0.0001). The extent of scar, viability and ischemia also correlated. At dobutamine echocardiography, a composite of dysfunctional and ischemic myocardium was the strongest correlate of BNP (r = 0.48, p < 0.0001), with less strong correlations by global parameters. The extent of dysfunctional myocardium, rather than its nature determines BNP levels.
Resumo:
Objective: To use quantitative myocardial contrast echocardiography (MCE) and strain rate imaging (SRI) to assess the role of microvascular disease in subclinical diabetic cardiomyopathy. Methods: Stress MCE and SRI were performed in 48 patients (22 with type II diabetes mellitus (DM) and 26 controls), all with normal left ventricular systolic function and no obstructive coronary disease by quantitative coronary angiography. Real-time MCE was acquired in three apical views at rest and after combined dipyridamole-exercise stress. Myocardial blood flow (MBF) was quantified in the 10 mid- and apical cardiac segments at rest and after stress. Resting peak systolic strain rate (SR) and peak systolic strain (epsilon) were calculated in the same 10 myocardial segments. Results: The DM and control groups were matched for age, sex and other risk factors, including hypertension. The DM group had higher body mass index and left ventricular mass index. Quantitative SRI analysis was possible in all patients and quantitative MCE in 46 (96%). The mean e, SR and MBF reserve were all significantly lower in the DM group than in controls, with diabetes the only independent predictor of each parameter. No correlation was seen between MBF and SR (r = -0.01, p = 0.54) or between MBF and epsilon ( r = -0.20, p = 0.20). Conclusions: Quantitative MCE shows that patients with diabetes but no evidence of obstructive coronary artery disease have impaired MBF reserve, but abnormal transmural flow and subclinical longitudinal myocardial dysfunction are not related.
Resumo:
The first derivative of pressure over time (dP/dt) is a marker of left ventricular (LV) systolic function that can be assessed during cardiac catheterization and echocardiography. Radial artery dP/dt (Radial-dP/dt) has been proposed as a possible marker of LV systolic function (Nichols & O’Rourke, McDonald’s Blood Flow in Arteries) and we sought to test this hypothesis. Methods:We compared simultaneously recorded RadialdP/ dt (by high-fidelity tonometry) with LV-dP/dt (by highfidelity catheter and echocardiography parameters analogous to LV-dP/dt) in patients without aortic valve disease. In study 1, beat to beat Radial-dP/dt and LV-dP/dt were recorded at rest and during supine exercise in 12 males (aged 61±12 years) undergoing cardiac catheterization. In study 2, 2D-echocardiography and Radial-dP/dt were recorded in 59 patients (43 men; aged 64±10 years) at baseline and peak dobutamine-induced stress. Three measures at the basal septum were taken as being analogous to LV-dP/dt: (1) peak systolic strain rate, (2) strain rate (SR-dP/dt), and (3) tissue velocity during isovolumic contraction. Results: Study 1; there was a significant difference between resting LV-dP/dt (1461±383 mmHg/s) and Radial-dP/dt (1182±319 mmHg/s; P < 0.001), and a poor, but statistically significant, correlation between the variables (R2 = 0.006; P < 0.001) due to the high number of data points compared (n = 681). Similar results were observed during exercise. Study 2; there was a moderate association between baseline Radial-dP/dt and SRdP/ dt (R2 =−0.17; P < 0.01), but no significant relationship between Radial-dP/dt and all other echocardiographic measures analogous to LV-dP/dt at rest or peak stress (P > 0.05). Conclusion: The radial pressurewaveform is not a reliable marker of LV contractility.