974 resultados para Diuron metabolites
Resumo:
RATIONALE: The aim of the work was to develop and validate a method for the quantification of vitamin D metabolites in serum using ultra-high-pressure liquid chromatography coupled to mass spectrometry (LC/MS), and to validate a high-resolution mass spectrometry (LC/HRMS) approach against a tandem mass spectrometry (LC/MS/MS) approach using a large clinical sample set. METHODS: A fast, accurate and reliable method for the quantification of the vitamin D metabolites, 25-hydroxyvitamin D2 (25OH-D2) and 25-hydroxyvitamin D3 (25OH-D3), in human serum was developed and validated. The C3 epimer of 25OH-D3 (3-epi-25OH-D3) was also separated from 25OH-D3. The samples were rapidly prepared via a protein precipitation step followed by solid-phase extraction (SPE) using an HLB μelution plate. Quantification was performed using both LC/MS/MS and LC/HRMS systems. RESULTS: Recovery, matrix effect, inter- and intra-day reproducibility were assessed. Lower limits of quantification (LLOQs) were determined for both 25OH-D2 and 25OH-D3 for the LC/MS/MS approach (6.2 and 3.4 µg/L, respectively) and the LC/HRMS approach (2.1 and 1.7 µg/L, respectively). A Passing & Bablok fit was determined between both approaches for 25OH-D3 on 662 clinical samples (1.11 + 1.06x). It was also shown that results can be affected by the inclusion of the isomer 3-epi-25OH-D3. CONCLUSIONS: Quantification of the relevant vitamin D metabolites was successfully developed and validated here. It was shown that LC/HRMS is an accurate, powerful and easy to use approach for quantification within clinical laboratories. Finally, the results here suggest that it is important to separate 3-epi-25OH-D3 from 25OH-D3. Copyright © 2012 John Wiley & Sons, Ltd.
Resumo:
The health benefits associated with the consumption of polyphenol-rich foods have been studied in depth, however, the full mechanism of action remains unknown. One of the proposed mechanisms is through microbiota interaction. In the present study, we aimed to explore the relationship between changes in fecal microbiota and changes in urinary phenolic metabolites after wine interventions. Nine participants followed a randomized, crossover, controlled interventional trial. After the washout period, they received red wine, dealcoholized red wine or gin for 20 days each. Polyphenol metabolites (n > 60) in urine were identified and quantified by UPLC-MS/MS and the microbial content of fecal samples was quantified by real-time quantitative PCR. Interventions with both red wine and dealcoholized red wine increased the fecal concentration of Bifidobacterium, Enterococcus and Eggerthella lenta, compared to gin intervention and baseline. When participants were categorized in tertiles of changes in fecal bacteria, those in the highest tertile of Bifidobacteria had higher urinary concentration changes in syringic acid, p-coumaric acid, 4-hydroxybenzoic acid and homovanillic acid (all anthocyanin metabolites) than those in tertile 1 (P < 0.05, all). In addition, changes of Bifidobacteria correlated positively with changes of these metabolites (r = 0.5-0.7, P < 0.05, all). Finally, the 68.5% changes in Bifidobacteria can be predicted by syringic acid and 4-hydroxybenzoic acid changes. This study confirms the important role of polyphenols as bacterial substrates and their modulatory capacity as an important field in the research of new products with prebiotic and probiotic characteristics for the food industry.
Resumo:
Background: CYP2D6 is the key enzyme responsible for tamoxifen bioactivation mainly into endoxifen. This gene is highly polymorphic and breast cancer patients classified as CYP2D6 poor metabolizers (PM) or intermediate metabolizers (IM) appear to show low concentrations of endoxifen and to achieve less benefit from tamoxifen treatment. Purpose: This prospective, open-label trial aimed to assess how the increase of tamoxifen dose influences the level of endoxifen in the different genotype groups (poor-, intermediate-, and extensive-metabolizers (EM)). We examined the impact of doubling tamoxifen dose to 20mg twice daily on endoxifen plasma concentrations across these genotype groups. Patients and methods: Patients were assayed for CYP2D6 genotype and phenotype using dextromethorphan test. Tamoxifen, N-desmethyltamoxifen, 4-hydroxytamoxifen and endoxifen plasma levels were determined on 2 occasions at baseline (20mg/day of tamoxifen) and at day 30, 90 and 120 after dose increase (20 mg twice daily) using liquid chromatography-tandem-mass spectrometry. Endoxifen plasma levels were measured 6 to 24 hours after last drug intake to evaluate its accumulation before and after doubling tamoxifen dosage. ANOVA was used to evaluate endoxifen levels increase and difference between genotype groups. Results: 63 patients are available for analysis to date. Tamoxifen, N-desmethyltamoxifen, 4-hydroxytamoxifen and endoxifen plasma reached steady state at 30 day after tamoxifen dose escalation, with a significant increase compared to baseline by 1.6 to 1.8 fold : geometric mean plasma concentrations (CV %) were 140 ng/mL (45%) at baseline vs 255 (47%) at day 30 for tamoxifen (P < 0.0001); 256 (49%) vs 408 (64%) for N-desmethyltamoxifen (P < 0.0001); 2.4 (46%) vs 3.9 (51%) for 4-OH-tamoxifen (P < 0.0001); and 20 (91%) vs 33 (91%) for endoxifen (P < 0.02). On baseline, endoxifen levels tended to be lower in PM: 7 ng/mL (36%), than IM: 16 ng/mL (70%), P=0.08, and EM: 24 ng/mL (71%), P<0.001. After doubling tamoxifen dosage, endoxifen concentrations rose similarly in PM, IM and EM with respectively, 1.5 (18%), 1.5 (28%) and 1.7 (30%) fold increase from baseline, P=0.18. Conclusion: Endoxifen exposure varies widely under standard tamoxifen dosage, with CYP2D6 genotype explaining only a minor part of this variability. It increases consistently on doubling tamoxifen dose, similarly across genotypes. This would enable exposure optimization based on concentration monitoring.
Resumo:
This study was conducted to identify enzyme systems eventually catalysing a local cerebral metabolism of citalopram, a widely used antidepressant of the selective serotonin reuptake inhibitor type. The metabolism of citalopram, of its enantiomers and demethylated metabolites was investigated in rat brain microsomes and in rat and human brain mitochondria. No cytochrome P-450 mediated transformation was observed in rat brain. By analysing H2O2 formation, monoamine oxidase A activity in rat brain mitochondria could be measured. In rat whole brain and in human frontal cortex, putamen, cerebellum and white matter of five brains monoamine oxidase activity was determined by the stereoselective measurement of the production of citalopram propionate. All substrates were metabolised by both forms of MAO, except in rat brain, where monoamine oxidase B activity could not be detected. Apparent Km and Vmax of S-citalopram biotransformation in human frontal cortex by monoamine oxidase B were found to be 266 microM and 6.0 pmol min(-1) mg(-1) protein and by monoamine oxidase A 856 microM and 6.4 pmol min(-1) mg(-1) protein, respectively. These Km values are in the same range as those for serotonin and dopamine metabolism by monoamine oxidases. Thus, the biotransformation of citalopram in the rat and human brain occurs mainly through monoamine oxidases and not, as in the liver, through cytochrome P-450.
Resumo:
The most frequently used method to demonstrate testosterone abuse is the determination of the testosterone and epitestosterone concentration ratio (T/E ratio) in urine. Nevertheless, it is known that factors other than testosterone administration may increase the T/E ratio. In the last years, the determination of the carbon isotope ratio has proven to be the most promising method to help discriminate between naturally elevated T/E ratios and those reflecting T use. In this paper, an excretion study following oral administration of 40 mg testosterone undecanoate initially and 13 h later is presented. Four testosterone metabolites (androsterone, etiocholanolone, 5 alpha-androstanediol, and 5 beta-androstanediol) together with an endogenous reference (5 beta-pregnanediol) were extracted from the urines and the delta(13)C/(12)C ratio of each compound was analyzed by gas chromatography-combustion-isotope ratio mass spectrometry. The results show similar maximum delta(13)C-value variations (parts per thousand difference of delta(13)C/(12)C ratio from the isotope ratio standard) for the T metabolites and concomitant changes of the T/E ratios after administration of the first and the second dose of T. Whereas the T/E ratios as well as the androsterone, etiocholanolone and 5 alpha-androstanediol delta(13)C-values returned to the baseline 15 h after the second T administration, a decrease of the 5 beta-androstanediol delta-values could be detected for over 40 h. This suggests that measurements of 5 beta-androstanediol delta-values allow the detection of a testosterone ingestion over a longer post-administration period than other T metabolites delta(13)C-values or than the usual T/E ratio approach.
Resumo:
Steady state plasma concentrations of the (L)- and (D)-enantiomers of trimipramine (TRI), desmethyltrimipramine (DTRI), 2-hydroxytrimipramine (TRIOH) and 2-hydroxydesmethyl-trimipramine (DTRIOH) were measured in 27 patients receiving between 300 and 400 mg/day racemic TRI. The patients were phenotyped with dextromethorphan and mephenytoin, and the 8-hour urinary ratios of dextromethorphan/dextrorphan, dextromethorphan/3-methoxymorphinan, and (S)-mephenytoin/(R)mephenytoin were used as markers of cytochrome P-450IID6 (CYP2D6), CYP3A4/5 and CYP2C19 activities, respectively. One patient was a CYP2D6 and one was a CYP2C19 poor metabolizer. A stereoselectivity in the metabolism of TRI has been found, with a preferential N-demethylation of (D)-TRI and a preferential hydroxylation of (L)-TRI. CYP2D6 appears to be involved in the 2-hydroxylation of (L)-TRI, (L)DTRI and (D)-DTRI, but not of (D)-TRI, as significant correlations were measured between the dextromethorphan/dextrorphan ratios and the (L)-TRI/(L)-TRIOH (r = 0.45, p = 0.019), the (L)-DTRI/(L)-DTRIOH (r = 0.47, p = 0.014), and the (D)-DTRI/(D)-DTRIOH (r = 0.51, p = 0.006), but not with the (D)-TRI/(D)-TRIOH ratios (r = 0.29, NS). CYP2C19, but not CYP2D6, appears to be involved in the demethylation pathway, with a stereoselectivity toward the (D)-enantiomer of TRI, as a significant positive correlation was calculated between the mephenytoin (S)/(R) ratios and the concentrations to dose-to-weight ratios of (D)-TRI (r = 0.69, p = 0.00006). CYP3A4/5 appears to be involved in the metabolism of (L)-TRI to a presently not determined metabolite. The CYP2D6 poor metabolizer had the highest (L)-DTRI and (D)-DTRI concentrations to dose-to-weight ratios, and the CYP2C19 poor metabolizer had the highest (L)-TRI and (D)-TRI concentrations to dose-to-weight ratios of the group.
Resumo:
High Resolution Magic Angle Spinning (HR-MAS) NMR allows metabolic characterization of biopsies. HR-MAS spectra from tissues of most organs show strong lipid contributions that are overlapping metabolite regions, which hamper metabolite estimation. Metabolite quantification and analysis would benefit from a separation of lipids and small metabolites. Generally, a relaxation filter is used to reduce lipid contributions. However, the strong relaxation filter required to eliminate most of the lipids also reduces the signals for small metabolites. The aim of our study was therefore to investigate different diffusion editing techniques in order to employ diffusion differences for separating lipid and small metabolite contributions in the spectra from different organs for unbiased metabonomic analysis. Thus, 1D and 2D diffusion measurements were performed, and pure lipid spectra that were obtained at strong diffusion weighting (DW) were subtracted from those obtained at low DW, which include both small metabolites and lipids. This subtraction yielded almost lipid free small metabolite spectra from muscle tissue. Further improved separation was obtained by combining a 1D diffusion sequence with a T2-filter, with the subtraction method eliminating residual lipids from the spectra. Similar results obtained for biopsies of different organs suggest that this method is applicable in various tissue types. The elimination of lipids from HR-MAS spectra and the resulting less biased assessment of small metabolites have potential to remove ambiguities in the interpretation of metabonomic results. This is demonstrated in a reproducibility study on biopsies from human muscle.
Resumo:
Genome-scale metabolic network reconstructions are now routinely used in the study of metabolic pathways, their evolution and design. The development of such reconstructions involves the integration of information on reactions and metabolites from the scientific literature as well as public databases and existing genome-scale metabolic models. The reconciliation of discrepancies between data from these sources generally requires significant manual curation, which constitutes a major obstacle in efforts to develop and apply genome-scale metabolic network reconstructions. In this work, we discuss some of the major difficulties encountered in the mapping and reconciliation of metabolic resources and review three recent initiatives that aim to accelerate this process, namely BKM-react, MetRxn and MNXref (presented in this article). Each of these resources provides a pre-compiled reconciliation of many of the most commonly used metabolic resources. By reducing the time required for manual curation of metabolite and reaction discrepancies, these resources aim to accelerate the development and application of high-quality genome-scale metabolic network reconstructions and models.
Resumo:
There is increasing evidence that the clinical efficacy of tamoxifen, the first and most widely used targeted therapy for estrogen-sensitive breast cancer, depends on the formation of the active metabolites 4-hydroxy-tamoxifen and 4-hydroxy-N-desmethyl-tamoxifen (endoxifen). Large inter-individual variability in endoxifen plasma concentrations has been observed and related both to genetic and environmental (i.e. drug-induced) factors altering CYP450s metabolizing enzymes activity. In this context, we have developed an ultra performance liquid chromatography-tandem mass spectrometry method (UPLC-MS/MS) requiring 100 μL of plasma for the quantification of tamoxifen and three of its major metabolites in breast cancer patients. Plasma is purified by a combination of protein precipitation, evaporation at room temperature under nitrogen, and reconstitution in methanol/20 mM ammonium formate 1:1 (v/v), adjusted to pH 2.9 with formic acid. Reverse-phase chromatographic separation of tamoxifen, N-desmethyl-tamoxifen, 4-hydroxy-tamoxifen and 4-hydroxy-N-desmethyl-tamoxifen is performed within 13 min using elution with a gradient of 10 mM ammonium formate and acetonitrile, both containing 0.1% formic acid. Analytes quantification, using matrix-matched calibration samples spiked with their respective deuterated internal standards, is performed by electrospray ionization-triple quadrupole mass spectrometry using selected reaction monitoring detection in the positive mode. The method was validated according to FDA recommendations, including assessment of relative matrix effects variability, as well as tamoxifen and metabolites short-term stability in plasma and whole blood. The method is precise (inter-day CV%: 2.5-7.8%), accurate (-1.4 to +5.8%) and sensitive (lower limits of quantification comprised between 0.4 and 2.0 ng/mL). Application of this method to patients' samples has made possible the identification of two further metabolites, 4'-hydroxy-tamoxifen and 4'-hydroxy-N-desmethyl-tamoxifen, described for the first time in breast cancer patients. This UPLC-MS/MS assay is currently applied for monitoring plasma levels of tamoxifen and its metabolites in breast cancer patients within the frame of a clinical trial aiming to assess the impact of dose increase on tamoxifen and endoxifen exposure.
Resumo:
A procedure using a chirobiotic V column is presented which allows separation of the enantiomers of citalopram and its two N-demethylated metabolites, and of the internal standard, alprenolol, in human plasma. Citalopram, demethylcitalopram and didemethylcitalopram, as well as the internal standard, were recovered from plasma by liquid-liquid extraction. The limits of quantification were found to be 5 ng/ml for each enantiomer of citalopram and demethylcitalopram, and 7.5 ng/ml for each enantiomer of didemethylcitalopram. Inter- and intra-day coefficients of variation varied from 2.4% to 8.6% for S- and R-citalopram, from 2.9% to 7.4% for S- and R-demethylcitalopram, and from 5.6% to 12.4% for S- and R- didemethylcitalopram. No interference was observed from endogenous compounds following the extraction of plasma samples from 10 different patients treated with citalopram. This method allows accurate quantification for each enantiomer and is, therefore, well suited for pharmacokinetic and drug interaction investigations. The presented method replaces a previously described highly sensitive and selective high-performance liquid chromatography procedure using an acetylated 3-cyclobond column which, because of manufactural problems, is no longer usable for the separation of the enantiomers of citalopram and its demethylated metabolites.
Resumo:
Proton T1 relaxation times of metabolites in the human brain have not previously been published at 7 T. In this study, T1 values of CH3 and CH2 group of N-acetylaspartate and total creatine as well as nine other brain metabolites were measured in occipital white matter and gray matter at 7 T using an inversion-recovery technique combined with a newly implemented semi-adiabatic spin-echo full-intensity acquired localized spectroscopy sequence (echo time = 12 ms). The mean T1 values of metabolites in occipital white matter and gray matter ranged from 0.9 to 2.2 s. Among them, the T1 of glutathione, scyllo-inositol, taurine, phosphorylethanolamine, and N-acetylaspartylglutamate were determined for the first time in the human brain. Significant differences in T1 between white matter and gray matter were found for water (-28%), total choline (-14%), N-acetylaspartylglutamate (-29%), N-acetylaspartate (+4%), and glutamate (+8%). An increasing trend in T1 was observed when compared with previously reported values of N-acetylaspartate (CH3 ), total creatine (CH3 ), and total choline at 3 T. However, for N-acetylaspartate (CH3 ), total creatine, and total choline, no substantial differences compared to previously reported values at 9.4 T were discernible. The T1 values reported here will be useful for the quantification of metabolites and signal-to-noise optimization in human brain at 7 T. Magn Reson Med 69:931-936, 2013. © 2012 Wiley Periodicals, Inc.
Resumo:
Liquid-chromatography (LC) high-resolution (HR) mass spectrometry (MS) analysis can record HR full scans, a technique of detection that shows comparable selectivity and sensitivity to ion transitions (SRM) performed with triple-quadrupole (TQ)-MS but that allows de facto determination of "all" ions including drug metabolites. This could be of potential utility in in vivo drug metabolism and pharmacovigilance studies in order to have a more comprehensive insight in drug biotransformation profile differences in patients. This simultaneous quantitative and qualitative (Quan/Qual) approach has been tested with 20 patients chronically treated with tamoxifen (TAM). The absolute quantification of TAM and three metabolites in plasma was realized using HR- and TQ-MS and compared. The same LC-HR-MS analysis allowed the identification and relative quantification of 37 additional TAM metabolites. A number of new metabolites were detected in patients' plasma including metabolites identified as didemethyl-trihydroxy-TAM-glucoside and didemethyl-tetrahydroxy-TAM-glucoside conjugates corresponding to TAM with six and seven biotransformation steps, respectively. Multivariate analysis allowed relevant patterns of metabolites and ratios to be associated with TAM administration and CYP2D6 genotype. Two hydroxylated metabolites, α-OH-TAM and 4'-OH-TAM, were newly identified as putative CYP2D6 substrates. The relative quantification was precise (<20 %), and the semiquantitative estimation suggests that metabolite levels are non-negligible. Metabolites could play an important role in drug toxicity, but their impact on drug-related side effects has been partially neglected due to the tremendous effort needed with previous MS technologies. Using present HR-MS, this situation should evolve with the straightforward determination of drug metabolites, enlarging the possibilities in studying inter- and intra-patients drug metabolism variability and related effects.
Resumo:
O objetivo deste estudo foi avaliar os efeitos da adição de vinhaça, nas doses de 100 e 200 m³ ha-1, nos processos de degradação e adsorção do herbicida diuron em solos Terra Roxa Estruturada (TR) e Latossolo Vermelho-Amarelo (LV). Para o estudo da degradação, foi instalado um experimento em delineamento inteiramente casualizado, arranjado em fatorial 2 (solos) x 3 (vinhaça: 0, 100 e 200 m³ ha-1), que foi conduzido por 120 dias. A mineralização foi avaliada por radiorrespirometria. Após os 120 dias, a molécula original e seus metabólitos foram extraídos do solo e detectados em "radio-scanner". Paralelamente, foi realizado um ensaio para avaliação do efeito das doses de vinhaça juntamente com o herbicida na atividade microbiana, pH e C orgânico do solo. O experimento de adsorção foi realizado com os mesmos tratamentos empregados no estudo de degradação, utilizando cinco concentrações do herbicida. A degradação do diuron no solo TR foi maior na presença de vinhaça, o que não foi observado para o LV. A adição do resíduo contribuiu para o aumento da atividade microbiana e do pH. A adsorção do diuron foi baixa nos dois solos, não apresentando influência da adição da vinhaça.
Resumo:
Sensitive and specific methods based on gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS) for the determination of levels of citalopram, desmethylcitalopram and didesmethylcitalopram in the plasma of patients treated with citalopram are presented, as well as a GC-MS procedure for the assay of the citalopram propionic acid derivative. After addition of a separate internal standard for each drug, liquid-solvent extraction is used to separate the basic compounds from the acid compounds. The demethylated amines are derivatized with trifluoroacetic anhydride, and the acid metabolite with methyl iodide. GC-MS is performed in the electron impact mode, as mass spectrometry by the (positive-ion) chemical ionization mode (methane and ammonia) appeared to be unsuitable. The limits of quantification were 1 ng/ml for citalopram and desmethylcitalopram and 2 ng/ml for the other metabolites. The correlation coefficients for the calibration curves (range 10-500 ng/ml) were > or = 0.999 for all compounds, whether determined by GC or GC-MS.