951 resultados para Dipeptidyl peptidase 4 (DPP-4) inhibition
Resumo:
Glucagon-like peptide-1 (7-36)amide (tGLP-1) is inactivated by dipeptidyl peptidase (DPP) IV by removal of the NH2-terminal dipeptide His(7)-Ala(8). We examined the degradation of NH2-terminally modified His(7)-glucitol tGLP-1 and its insulin-releasing and antihyperglycaemic activity in vivo, tGLP-1 was degraded by purified DPP IV after 4 h (43% intact) and after 12 hi 89% was converted to GLP-1(9-36)amide. In contrast > 99% of His(7)-glucitol tGLP-1 remained intact at 12 h. His(7)-glucitol tGLP-1 was similarly resistant to plasma degradation in vitro. His7-glucitol tGLP-1 showed greater resistance to degradation in vivo (92% intact) compared to tGLP-1 (27% intact) 10 min after i.p. administration to Wistar rats. Glucose homeostasis was examined following i.p. injection of both peptides (12 nmol/kg) together with glucose (18 mmol/kg). Plasma glucose concentrations were significantly reduced and insulin concentrations elevated following peptides administration compared with glucose alone. The area under the curve (AUC) for glucose for controls (AUC 691 +/- 35 mM/min) was significantly lower after administration of tGLP-1 and His7-glucitol tGLP-1 (36 and 49% less; AUC; 440 +/- 40 and 353 +/- 31 mM/min, respectively; P
Resumo:
Diabetes mellitus is a heterogeneous metabolic disorder characterized by hyperglycemia with disturbances in carbohydrate, protein and lipid metabolism resulting from defects in insulin secretion, insulin action or both. Currently there are 387 million people with diabetes worldwide and is expected to affect 592 million people by 2035. Insulin resistance in peripheral tissues and pancreatic beta cell dysfunction are the major challenges in the pathophysiology of diabetes. Diabetic secondary complications (like liver cirrhosis, retinopathy, microvascular and macrovascular complications) arise from persistent hyperglycemia and dyslipidemia can be disabling or even life threatening. Current medications are effective for control and management of hyperglycemia but undesirable effects, inefficiency against secondary complications and high cost are still serious issues in the present prognosis of this disorder. Hence the search for more effective and safer therapeutic agents of natural origin has been found to be highly demanding and attract attention in the present drug discovery research. The data available from Ayurveda on various medicinal plants for treatment of diabetes can efficiently yield potential new lead as antidiabetic agents. For wider acceptability and popularity of herbal remedies available in Ayurveda scientific validation by the elucidation of mechanism of action is very much essential. Modern biological techniques are available now to elucidate the biochemical basis of the effectiveness of these medicinal plants. Keeping this idea the research programme under this thesis has been planned to evaluate the molecular mechanism responsible for the antidiabetic property of Symplocos cochinchinensis, the main ingredient of Nishakathakadi Kashayam, a wellknown Ayurvedic antidiabetic preparation. A general introduction of diabetes, its pathophysiology, secondary complications and current treatment options, innovative solutions based on phytomedicine etc has been described in Chapter 1. The effect of Symplocos cochinchinensis (SC), on various in vitro biochemical targets relevant to diabetes is depicted in Chapter 2 including the preparation of plant extract. Since diabetes is a multifactorial disease, ethanolic extract of the bark of SC (SCE) and its fractions (hexane, dichloromethane, ethyl acetate and 90 % ethanol) were evaluated by in vitro methods against multiple targets such as control of postprandial hyperglycemia, insulin resistance, oxidative stress, pancreatic beta cell proliferation, inhibition of protein glycation, protein tyrosine phosphatase-1B (PTP-1B) and dipeptidyl peptidase-IV (DPPxxi IV). Among the extracts, SCE exhibited comparatively better activity like alpha glucosidase inhibition, insulin dependent glucose uptake (3 fold increase) in L6 myotubes, pancreatic beta cell regeneration in RIN-m5F and reduced triglyceride accumulation in 3T3-L1 cells, protection from hyperglycemia induced generation of reactive oxygen species in HepG2 cells with moderate antiglycation and PTP-1B inhibition. Chemical characterization by HPLC revealed the superiority of SCE over other extracts due to presence of bioactives (beta-sitosterol, phloretin 2’glucoside, oleanolic acid) in addition to minerals like magnesium, calcium, potassium, sodium, zinc and manganese. So SCE has been subjected to oral sucrose tolerance test (OGTT) to evaluate its antihyperglycemic property in mild diabetic and diabetic animal models. SCE showed significant antihyperglycemic activity in in vivo diabetic models. Chapter 3 highlights the beneficial effects of hydroethanol extract of Symplocos cochinchinensis (SCE) against hyperglycemia associated secondary complications in streptozotocin (60 mg/kg body weight) induced diabetic rat model. Proper sanction had been obtained for all the animal experiments from CSIR-CDRI institutional animal ethics committee. The experimental groups consist of normal control (NC), N + SCE 500 mg/kg bwd, diabetic control (DC), D + metformin 100 mg/kg bwd, D + SCE 250 and D + SCE 500. SCEs and metformin were administered daily for 21 days and sacrificed on day 22. Oral glucose tolerance test, plasma insulin, % HbA1c, urea, creatinine, aspartate aminotransferase (AST), alanine aminotransferase (ALT), albumin, total protein etc. were analysed. Aldose reductase (AR) activity in the eye lens was also checked. On day 21, DC rats showed significantly abnormal glucose response, HOMA-IR, % HbA1c, decreased activity of antioxidant enzymes and GSH, elevated AR activity, hepatic and renal oxidative stress markers compared to NC. DC rats also exhibited increased level of plasma urea and creatinine. Treatment with SCE protected from the deleterious alterations of biochemical parameters in a dose dependent manner including histopathological alterations in pancreas. SCE 500 exhibited significant glucose lowering effect and decreased HOMA-IR, % HbA1c, lens AR activity, and hepatic, renal oxidative stress and function markers compared to DC group. Considerable amount of liver and muscle glycogen was replenished by SCE treatment in diabetic animals. Although metformin showed better effect, the activity of SCE was very much comparable with this drug. xxii The possible molecular mechanism behind the protective property of S. cochinchinensis against the insulin resistance in peripheral tissue as well as dyslipidemia in in vivo high fructose saturated fat diet model is described in Chapter 4. Initially animal were fed a high fructose saturated fat (HFS) diet for a period of 8 weeks to develop insulin resistance and dyslipidemia. The normal diet control (ND), ND + SCE 500 mg/kg bwd, high fructose saturated fat diet control (HFS), HFS + metformin 100 mg/kg bwd, HFS + SCE 250 and HFS + SCE 500 were the experimental groups. SCEs and metformin were administered daily for the next 3 weeks and sacrificed at the end of 11th week. At the end of week 11, HFS rats showed significantly abnormal glucose and insulin tolerance, HOMA-IR, % HbA1c, adiponectin, lipid profile, liver glycolytic and gluconeogenic enzyme activities, liver and muscle triglyceride accumulation compared to ND. HFS rats also exhibited increased level of plasma inflammatory cytokines, upregulated mRNA level of gluconeogenic and lipogenic genes in liver. HFS exhibited the increased expression of GLUT-2 in liver and decreased expression of GLUT-4 in muscle and adipose. SCE treatment also preserved the architecture of pancreas, liver, and kidney tissues. Treatment with SCE reversed the alterations of biochemical parameters, improved insulin sensitivity by modifying gene expression in liver, muscle and adipose tissues. Overall results suggest that SC mediates the antidiabetic activity mainly via alpha glucosidase inhibition, improved insulin sensitivity, with antiglycation and antioxidant activities.
Resumo:
Background Canonical serine protease inhibitors commonly bind to their targets through a rigid loop stabilised by an internal hydrogen bond network and disulfide bond(s). The smallest of these is sunflower trypsin inhibitor (SFTI-1), a potent and broad-range protease inhibitor. Recently, we re-engineered the contact β-sheet of SFTI-1 to produce a selective inhibitor of kallikrein-related peptidase 4 (KLK4), a protease associated with prostate cancer progression. However, modifications in the binding loop to achieve specificity may compromise structural rigidity and prevent re-engineered inhibitors from reaching optimal binding affinity. Methodology/Principal Findings In this study, the effect of amino acid substitutions on the internal hydrogen bonding network of SFTI were investigated using an in silico screen of inhibitor variants in complex with KLK4 or trypsin. Substitutions favouring internal hydrogen bond formation directly correlated with increased potency of inhibition in vitro. This produced a second generation inhibitor (SFTI-FCQR Asn14) which displayed both a 125-fold increased capacity to inhibit KLK4 (Ki = 0.0386±0.0060 nM) and enhanced selectivity over off-target serine proteases. Further, SFTI-FCQR Asn14 was stable in cell culture and bioavailable in mice when administered by intraperitoneal perfusion. Conclusion/Significance These findings highlight the importance of conserving structural rigidity of the binding loop in addition to optimising protease/inhibitor contacts when re-engineering canonical serine protease inhibitors.
Resumo:
Background: Cell-surface glycoproteins play critical roles in cell-to-cell recognition, signal transduction and regulation, thus being crucial in cell proliferation and cancer etiogenesis and development. DPP IV and NEP are ubiquitous glycopeptidases closely linked to tumor pathogenesis and development, and they are used as markers in some cancers. In the present study, the activity and protein and mRNA expression of these glycoproteins were analysed in a subset of clear-cell (CCRCC) and chromophobe (ChRCC) renal cell carcinomas, and in renal oncocytomas (RO). Methods: Peptidase activities were measured by conventional enzymatic assays with fluorogen-derived substrates. Gene expression was quantitatively determined by qRT-PCR and membrane-bound protein expression and distribution analysis was performed by specific immunostaining. Results: The activity of both glycoproteins was sharply decreased in the three histological types of renal tumors. Protein and mRNA expression was strongly downregulated in tumors from distal nephron (ChRCC and RO). Moreover, soluble DPP IV activity positively correlated with the aggressiveness of CCRCCs (higher activities in high grade tumors). Conclusions: These results support the pivotal role for DPP IV and NEP in the malignant transformation pathways and point to these peptidases as potential diagnostic markers.
Resumo:
In this study, a series of N-chloro-acetylated dipeptides were synthesised by the application of Houghten's methodology of multiple analog peptide syntheses. The peptides, all of which contain a C-terminal free acid, were tested as inactivators of bovine cathepsin B, in an attempt at exploiting the known and, amongst the cysteine proteinases, unique carboxy dipeptidyl peptidase activity of the protease. We have succeeded in obtaining a number of effective inactivators, the most potent of which-chloroacetyl-Leu-Leu-OH, inactivates the enzyme with an apparent second-order rate constant of 3.8 x 10(4) M-1 min(-1). In contrast, the esterified analog, chloroacetyl-Leu-Leu-OMe, inactivates the enzyme some three orders of magnitude less efficiently, lending credence to our thesis that a free carboxylic acid moiety is an important determinant for inhibitor effectiveness. This preliminary study has highlighted a number of interesting features about the specificity requirements of the bovine proteinase and we believe that our approach has great potential for the rapid delineation of the subsite specificities of cathepsin B-like proteases from various species. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
The incretin hormone glucose-dependent insulinotropic polypeptide (GIP) is rapidly degraded in the circulation by dipeptidyl peptidase IV forming the N-terminally truncated peptide GIP(3-42). The present study examined the biological activity of this abundant circulating fragment peptide to establish its possible role in GIP action. Human GIP and GIP(3-42) were synthesised by Fmoc solid-phase peptide synthesis, purified by HPLC and characterised by electrospray ionisation-mass spectrometry. In GIP receptor-transfected Chinese hamster lung fibroblasts, GIP(3-42) dose dependently inhibited GIP-stimulated (10(-7) M) cAMP production (up to 75.4 +/-5.4%; P
Resumo:
Gastric inhibitory polypeptide (GIP) is an important insulin-releasing hormone of the enteroinsular axis which is rapidly inactivated by the exopeptidase dipeptidyl peptidase (DPP) IV. The present study has examined the ability of Tyr(1)-glucitol GIP to be protected from plasma degradation and to enhance insulin-releasing and antihyperglycaemic activity in 20- to 25-week-old obese diabetic ob/ob mice. Degradation of GIP by incubation at 37 degrees C with obese mouse plasma was clearly evident after 3 h (35% degraded). After 6 h, more than 61% of GIP was converted to GIP(3-42) whereas N-terminally modified Tyr(1)-glucitol GIP was resistant to degradation in plasma (>99% intact after 6 h). The formation of GIP(3-42) was almost completely abolished by inhibition of plasma DPP IV with diprotin A. Effects of GIP and Tyr(1)-glucitol GIP were examined in overnight-fasted obese mice following i.p. injection of either peptide (20 nmol/kg) together with glucose (18 mmol/kg) or in association with feeding. Most prominent effects were observed in the former group where plasma glucose values at 60 min together with the area under the curve (AUC) for glucose were significantly lower following GIP (AUC, 874 +/- 72 mmol/l.min; P
Resumo:
Diagnosis of Neospora caninum infection in dogs is based on serological assays such as the indirect fluorescent antibody test (IFAT) and enzyme-linked immunosorbent assays (ELISA). This study evaluated two serological tests (IFAT and ELISA) for the detection of IgG antibodies to N. caninum in 300 serum samples of dogs through the optimization of cut off titers by using the two-graph receiveroperating characteristic (TG-ROC) curve. In addition, the identification of major cross-reactive antigens with Toxoplasma gondii was investigated by inhibition ELISA and immunoblotting (IB) assays. IFAT and ELISA results showed 74% agreement, with a good negative concordance (P-neg=0.83), but a poor positive concordance (P-pos=0.42). The great majority (86%) of sera with positive concordant results (IFAT+/ELISA+) recognized at least two out of three N. caninum immunodominant antigens, particularly the 29-32 and 35-37 kDa bands. Optimization of cut off titers in IFAT and ELISA was performed considering the reactivity to at least two out of three N. caninum immunodominant antigens as infection markers, obtaining a titer of 50 for IFAT and 200 for ELISA. Seropositivity to N. caninuin was significantly associated with T gondii-seropositive samples, particularly in ELISA (55.4%). Inhibition ELISA curves for N. caninum showed a partial heterologous inhibition, indicating some degree of cross-reactivity between N. caninum and T gondii antigens. Inhibition IB assays showed a moderate heterologous inhibition for N. caninum antigens above 45-50 kDa. These results indicate that ELISA should be used critically when crude tachyzoite antigen preparations are employed, due to possible cross-reactivity with other related parasites as T gondii. Also, the cut off dilution of 1:50 in IFAT showed to be the most appropriated for N. caninum serology in dogs. Therefore, we suggest that N. caninum immunodominant antigens, specially the 17 and 29-32 kDa proteins, should be selected markers in serological assays for canine neosporosis. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
We recently have shown that selective growth of transplanted normal hepatocytes can be achieved in a setting of cell cycle block of endogenous parenchymal cells. Thus, massive proliferation of donor-derived normal hepatocytes was observed in the liver of rats previously given retrorsine (RS), a naturally occurring alkaloid that blocks proliferation of resident liver cells. In the present study, the fate of nodular hepatocytes transplanted into RS-treated or normal syngeneic recipients was followed. The dipeptidyl peptidase type IV-deficient (DPPIV−) rat model for hepatocyte transplantation was used to distinguish donor-derived cells from recipient cells. Hepatocyte nodules were chemically induced in Fischer 344, DPPIV+ rats; livers were then perfused and larger (>5 mm) nodules were separated from surrounding tissue. Cells isolated from either tissue were then injected into normal or RS-treated DPPIV− recipients. One month after transplantation, grossly visible nodules (2–3 mm) were seen in RS-treated recipients transplanted with nodular cells. They grew rapidly, occupying 80–90% of the host liver at 2 months, and progressed to hepatocellular carcinoma within 4 months. By contrast, no liver nodules developed within 6 months when nodular hepatocytes were injected into the liver of recipients not exposed to RS, although small clusters of donor-derived cells were present in these animals. Taken together, these results directly point to a fundamental role played by the host environment in modulating the growth and the progression rate of altered cells during carcinogenesis. In particular, they indicate that conditions associated with growth constraint of the host tissue can drive tumor progression in vivo.
Resumo:
The metabolic conjugation of exogenous and endogenous carboxylic acid substrates with endogenous glucuronic acid, mediated by the uridine diphosphoglucuronosyl transferase (UGT) superfamily of enzymes, leads to the formation of acyl glucuronide metabolites. Since the late 1970s, acyl glucuronides have been increasingly identified as reactive electrophilic metabolites, capable of undergoing three reactions: intramolecular rearrangement, hydrolysis, and intermolecular reactions with proteins leading to covalent drug-protein adducts. This essential dogma has been accepted for over a decade. The key question proposed by researchers, and now the pharmaceutical industry, is: does or can the covalent modification of endogenous proteins, mediated by reactive acyl glucuronide metabolites, lead to adverse drug reactions, perhaps idiosyncratic in nature? This review evaluates the evidence for acyl glucuronide-derived perturbation of homeostasis, particularly that which might result from the covalent modification of endogenous proteins and other macromolecules. Because of the availability of acyl glucuronides for test tube/in vitro experiments, there is now a substantial literature documenting their rearrangement, hydrolysis and covalent modification of proteins in vitro. It is certain from in vitro experiments that serum albumin, dipeptidyl peptidase IV, tubulin and UGTs are covalently modified by acyl glucuronides. However, these in vitro experiments have been specifically designed to amplify any interference with a biological process in order to find biological effects. The in vivo situation is not at all clear. Certainly it must be concluded that all humans taking carboxylate drugs that form reactive acyl glucuronides will form covalent drug-protein adducts, and it must also be concluded that this in itself is normally benign. However, there is enough in vivo evidence implicating acyl glucuronides, which, when backed up by in vivo circumstantial and documented in vitro evidence, supports the view that reactive acyl glucuronides may initiate toxicity/immune responses. In summary, though acyl glucuronide-derived covalent modification of endogenous macromolecules is well-defined, the work ahead needs to provide detailed links between such modification and its possible biological consequences. (C) 2003 Elsevier Science Ireland Ltd. All rights reserved.
Resumo:
The concentration of liver ubiquinone increased progressively with the time of feeding ubiquinone, and this increase was reflected in all the cell fractions. 2. 2. Inhibition of sterol synthesis by ubiquinone was exerted only in the liver, not in the kidney or intestine. 3. 3. Extending the period of feeding ubiquinone or increasing the concentration of ubiquinone fed had no effect on the extent of inhibition. 4. 4. Inhibition was found to be specific to ubiquinone-9, the natural major homologue in the rat liver; other homologues were ineffective. 5. 5. The site of inhibition by ubiquinone was indicated to be between acetyl-CoA and mevalonate, since there was no change in fatty acid and ketone body synthesis in ubiquinone-fed animals as compared to normal animals.
Resumo:
Introduction: L'arthrose est caractérisée par une destruction progressive du cartilage, une inflammation synoviale, et un remodelage de l’os sous-chondral avec une production excessive des médiateurs inflammatoires et cataboliques. Nous avons démontré que le niveau du 4-hydroxynonénal (4-HNE), un produit de la peroxydation lipidique, est augmenté dans le cartilage humain arthrosique sans qu’on sache le mécanisme exacte impliqué dans l’augmentation de cette molécule. Des données de la littérature indiquent que l’accumulation du HNE est contrôlée par l’action de la glutathione S-transférase A4-4 (GSTA4-4), une enzyme impliquée dans la détoxification du HNE. Au niveau transcriptionel, l’expression de cette enzyme est régulée par la transactivation du facteur de transcription Nrf2. Objectif: L’objectif de cette étude vise à démontrer que l’augmentation du HNE dans le cartilage arthrosique est attribuée, en partie, à l’altération de l’expression de la GSTA4-4 et de Nrf2. Méthode: Le niveau d’expression de la GSTA4-4 et de Nrf2 a été mesurée par Western blot et par PCR en temps réel dans le cartilage humain arthrosique et dans le cartilage provenant des souris atteintes d’arthrose. Pour démontrer le rôle du Nrf2 dans l’arthrose, les chondrocytes humains arthrosiques ont été traités par l’interleukine 1beta (IL-1β) ou par le H2O2 en présence ou en absence des activateurs du Nrf2 tels que le Protandim®, AI, et du 6-Gingérol. Par ailleurs, les chondrocytes ont été transfectés par un vecteur d’expression de Nrf2 puis traités par l’IL-β. En utilisant le modèle d’arthrose chez la souris, les animaux ont été traités par voie orale de 10 mg/kg/jour de Protandim® pendant 8 semaines. Résultats: Nous avons observé une diminution significative de l’expression de la GSTA4-4 et de Nrf2 dans le cartilage humain et murin arthrosique. L'activation de Nrf2 bloque la stimulation de la métalloprotéinase-13 (MMP-13), la prostaglandine E2 (PGE2) et de l'oxyde nitrique (NO) par l’IL-1β. En outre, nous avons montré que l'activation Nrf2 protège les cellules contre la mort cellulaire induite par H2O2. Fait intéressant, l'administration orale de Protandim® réduit la production du HNE par l'intermédiaire de l’activation de la GSTA4. Nous avons démontré que le niveau d’expression de la GSTA4-4 et de Nrf2 diminue dans le cartilage provenant des patients et des souris atteints d’arthrose. De plus, la surexpression de ce facteur nucléaire Nrf2 empêche la production du HNE et la MMP-13 et l’inactivation de la GSTA4-4. Dans notre modèle expérimental d’arthrose induite par déstabilisation du ménisque médial chez la souris, nous avons trouvé que l'administration orale de Protandim® à 10 mg / kg / jour réduit les lésions du cartilage. Conclusion: Cette étude est de la première pour démontrer le rôle physiopathologique du Nrf2 in vitro et in vivo. Nos résultats démontrent que l’activation du Nrf2 est essentielle afin de maintenir l’expression de la GSTA4-4 et de réduire le niveau du HNE. Le fait que les activateurs du Nrf2 abolissent la production de la HNE et aussi un certain nombre de facteurs connus pour être impliqués dans la pathogenèse de l’arthrose les rend des agents cliniquement utiles pour la prévention de la maladie.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)