983 resultados para Dinàmica de fluids
Resumo:
An effect of multiplicative noise in the time-dependent Ginzburg-Landau model is reported, namely, that noise at a relatively low intensity induces a phase transition towards an ordered state, whereas strong noise plays a destructive role, driving the system back to its disordered state through a reentrant phase transition. The phase diagram is calculated analytically using a mean-field theory and a more sophisticated approach and is compared with the results from extensive numerical simulations.
Resumo:
We review recent results on dynamical aspects of viscous fingering. The Saffman¿Taylor instability is studied beyond linear stability analysis by means of a weakly nonlinear analysis and the exact determination of the subcritical branch. A series of contributions pursuing the idea of a dynamical solvability scenario associated to surface tension in analogy with the traditional selection theory is put in perspective and discussed in the light of the asymptotic theory of Tanveer and co-workers. The inherently dynamical singular effects of surface tension are clarified. The dynamical role of viscosity contrast is explored numerically. We find that the basin of attraction of the Saffman¿Taylor finger depends on viscosity contrast, and that the sensitivity to this parameter is maximal in the usual limit of high viscosity contrast. The competing attractors are identified as closed bubble solutions. We briefly report on recent results and work in progress concerning rotating Hele-Shaw flows, topological singularities and wetting effects, and also discuss future directions in the context of viscous fingering
Resumo:
The effects of flow induced by a random acceleration field (g-jitter) are considered in two related situations that are of interest for microgravity fluid experiments: the random motion of isolated buoyant particles, and diffusion driven coarsening of a solid-liquid mixture. We start by analyzing in detail actual accelerometer data gathered during a recent microgravity mission, and obtain the values of the parameters defining a previously introduced stochastic model of this acceleration field. The diffusive motion of a single solid particle suspended in an incompressible fluid that is subjected to such random accelerations is considered, and mean squared velocities and effective diffusion coefficients are explicitly given. We next study the flow induced by an ensemble of such particles, and show the existence of a hydrodynamically induced attraction between pairs of particles at distances large compared with their radii, and repulsion at short distances. Finally, a mean field analysis is used to estimate the effect of g-jitter on diffusion controlled coarsening of a solid-liquid mixture. Corrections to classical coarsening rates due to the induced fluid motion are calculated, and estimates are given for coarsening of Sn-rich particles in a Sn-Pb eutectic fluid, an experiment to be conducted in microgravity in the near future.
Resumo:
We study the fingering instability of a circular interface between two immiscible liquids in a radial Hele-Shaw cell. The cell rotates around its vertical symmetry axis, and the instability is driven by the density difference between the two fluids. This kind of driving allows studying the interfacial dynamics in the particularly interesting case of an interface separating two liquids of comparable viscosity. An accurate experimental study of the number of fingers emerging from the instability reveals a slight but systematic dependence of the linear dispersion relation on the gap spacing. We show that this result is related to a modification of the interface boundary condition which incorporates stresses originated from normal velocity gradients. The early nonlinear regime shows nearly no competition between the outgrowing fingers, characteristic of low viscosity contrast flows. We perform experiments in a wide range of experimental parameters, under conditions of mass conservation (no injection), and characterize the resulting patterns by data collapses of two characteristic lengths: the radius of gyration of the pattern and the interface stretching. Deep in the nonlinear regime, the fingers which grow radially outwards stretch and become gradually thinner, to a point that the fingers pinch and emit drops. We show that the amount of liquid emitted in the first generation of drops is a constant independent of the experimental parameters. Further on there is a sharp reduction of the amount of liquid centrifugated, punctuated by periods of no observable centrifugation.
Resumo:
We perform a three-dimensional study of steady state viscous fingers that develop in linear channels. By means of a three-dimensional lattice-Boltzmann scheme that mimics the full macroscopic equations of motion of the fluid momentum and order parameter, we study the effect of the thickness of the channel in two cases. First, for total displacement of the fluids in the channel thickness direction, we find that the steady state finger is effectively two-dimensional and that previous two-dimensional results can be recovered by taking into account the effect of a curved meniscus across the channel thickness as a contribution to surface stresses. Second, when a thin film develops in the channel thickness direction, the finger narrows with increasing channel aspect ratio in agreement with experimental results. The effect of the thin film renders the problem three-dimensional and results deviate from the two-dimensional prediction.
Resumo:
We study the forced displacement of a fluid-fluid interface in a three-dimensional channel formed by two parallel solid plates. Using a lattice-Boltzmann method, we study situations in which a slip velocity arises from diffusion effects near the contact line. The difference between the slip and channel velocities determines whether the interface advances as a meniscus or a thin film of fluid is left adhered to the plates. We find that this effect is controlled by the capillary and Péclet numbers. We estimate the crossover from a meniscus to a thin film and find good agreement with numerical results. The penetration regime is examined in the steady state. We find that the occupation fraction of the advancing finger relative to the channel thickness is controlled by the capillary number and the viscosity contrast between the fluids. For high viscosity contrast, lattice-Boltzmann results agree with previous results. For zero viscosity contrast, we observe remarkably narrow fingers. The shape of the finger is found to be universal.
Resumo:
A controlled perturbation is introduced into the Saffman-Taylor flow problem by adding a gradient to the gap of a Hele-Shaw cell. The stability of the single-finger steady state was found to be strongly affected by such a perturbation. Compared with patterns in a standard Hele-Shaw cell, the single Saffman-Taylor finger was stabilized or destabilized according to the sign of the gap gradient. While a linear stability analysis shows that this perturbation should have a negligible effect on the early-stage pattern formation, the experimental data indicate that the characteristic length for the initial breakup of a flat interface has been changed by the perturbation.
Resumo:
We propose a short-range generalization of the p-spin interaction spin-glass model. The model is well suited to test the idea that an entropy collapse is at the bottom line of the dynamical singularity encountered in structural glasses. The model is studied in three dimensions through Monte Carlo simulations, which put in evidence fragile glass behavior with stretched exponential relaxation and super-Arrhenius behavior of the relaxation time. Our data are in favor of a Vogel-Fulcher behavior of the relaxation time, related to an entropy collapse at the Kauzmann temperature. We, however, encounter difficulties analogous to those found in experimental systems when extrapolating thermodynamical data at low temperatures. We study the spin-glass susceptibility, investigating the behavior of the correlation length in the system. We find that the increase of the relaxation time is accompanied by a very slow growth of the correlation length. We discuss the scaling properties of off-equilibrium dynamics in the glassy regime, finding qualitative agreement with the mean-field theory.
Resumo:
We show the appearance of spatiotemporal stochastic resonance in the Swift-Hohenberg equation. This phenomenon emerges when a control parameter varies periodically in time around the bifurcation point. By using general scaling arguments and by taking into account the common features occurring in a bifurcation, we outline possible manifestations of the phenomenon in other pattern-forming systems.
Resumo:
We show that the statistics of an edge type variable in natural images exhibits self-similarity properties which resemble those of local energy dissipation in turbulent flows. Our results show that self-similarity and extended self-similarity hold remarkably for the statistics of the local edge variance, and that the very same models can be used to predict all of the associated exponents. These results suggest using natural images as a laboratory for testing more elaborate scaling models of interest for the statistical description of turbulent flows. The properties we have exhibited are relevant for the modeling of the early visual system: They should be included in models designed for the prediction of receptive fields.
Resumo:
Natural images are characterized by the multiscaling properties of their contrast gradient, in addition to their power spectrum. In this Letter we show that those properties uniquely define an intrinsic wavelet and present a suitable technique to obtain it from an ensemble of images. Once this wavelet is known, images can be represented as expansions in the associated wavelet basis. The resulting code has the remarkable properties that it separates independent features at different resolution level, reducing the redundancy, and remains essentially unchanged under changes in the power spectrum. The possible generalization of this representation to other systems is discussed.
Resumo:
We describe simulations of an elastic filament immersed in a fluid and subjected to a body force. The coupling between the fluid flow and the friction that the filament experiences induces bending and alignment perpendicular to the force. With increasing force there are four shape regimes, ranging from slight distortion to an unsteady tumbling motion. We also find marginally stable structures. The instability of these shapes and the alignment are explained by induced bending and nonlocal hydrodynamic interactions. These effects are experimentally relevant for stiff microfilaments.
Resumo:
Naive scale invariance is not a true property of natural images. Natural monochrome images possess a much richer geometrical structure, which is particularly well described in terms of multiscaling relations. This means that the pixels of a given image can be decomposed into sets, the fractal components of the image, with well-defined scaling exponents [Turiel and Parga, Neural Comput. 12, 763 (2000)]. Here it is shown that hyperspectral representations of natural scenes also exhibit multiscaling properties, observing the same kind of behavior. A precise measure of the informational relevance of the fractal components is also given, and it is shown that there are important differences between the intrinsically redundant red-green-blue system and the decorrelated one defined in Ruderman, Cronin, and Chiao [J. Opt. Soc. Am. A 15, 2036 (1998)].
Resumo:
We present calculations for the static structure and ordering properties of two lithium-based s-p bonded liquid alloys, Li-Na and Li-Mg. Our theoretical approach is based on the neutral pseudoatom method to derive the interatomic pair potentials, and on the modified-hypernetted-chain theory of liquids to obtain the liquid static structure, leading to a whole combination that is free of adjustable parameters. The study is complemented by performing molecular dynamics simulations which, besides checking the theoretical static structural results, also allow a calculation of some dynamical properties. The obtained results are compared with the available experimental data.
Resumo:
We perform a three-dimensional study of steady state viscous fingers that develop in linear channels. By means of a three-dimensional lattice-Boltzmann scheme that mimics the full macroscopic equations of motion of the fluid momentum and order parameter, we study the effect of the thickness of the channel in two cases. First, for total displacement of the fluids in the channel thickness direction, we find that the steady state finger is effectively two-dimensional and that previous two-dimensional results can be recovered by taking into account the effect of a curved meniscus across the channel thickness as a contribution to surface stresses. Second, when a thin film develops in the channel thickness direction, the finger narrows with increasing channel aspect ratio in agreement with experimental results. The effect of the thin film renders the problem three-dimensional and results deviate from the two-dimensional prediction.