940 resultados para Dimeric tin sulfides
Resumo:
The significance of two interface arginine residues on the structural integrity of an obligatory dimeric enzyme thymidylate synthase (TS) from Lactobacillus casei was investigated by thermal and chemical denaturation. While the R178F mutant showed apparent stability to thermal denaturation by its decreased tendency to aggregate, the Tm of the R218K mutant was lowered by 5 degrees C. Equilibrium denaturation studies in guanidinium chloride (GdmCl) and urea indicate that in both the mutants, replacement of Arg residues results in more labile quaternary and tertiary interactions. Circular dichroism studies in aqueous buffer suggest that the protein interior in R218K may be less well-packed as compared to the wild type protein. The results emphasize that quaternary interactions may influence the stability of the tertiary fold of TS. The amino acid replacements also lead to notable alteration in the ability of the unfolding intermediate of TS to aggregate. The aggregated state of partially unfolded intermediate in the R178F mutant is stable over a narrower range of denaturant concentrations. In contrast, there is an exaggerated tendency on the part of R218K to aggregate in intermediate concentrations of the denaturant. The 3 A crystal structure of the R178F mutant reveals no major structural change as a consequence of amino acid substitution. The results may be rationalized in terms of mutational effects on both the folded and unfolded state of the protein. Site specific amino acid substitutions are useful in identifying specific regions of TS involved in association of non-native protein structures.
Resumo:
The short‐circuit current density (Jsc) of indium tin oxide (ITO/silicon solar cells has been shown both theoretically and experimentally to be a function of the thickness of the ion beam sputtered ITO layer. These results can be accounted for by computing the optical reflection from the ITO/silicon interface.
Resumo:
The surfactant-assisted seed-mediated growth method was used for the formation of gold nanorods (GNRs) directly on gold (Au) and indium tin oxide (ITO) surfaces. Citrate-stabilized similar to 2.6 nm spherical gold nanoparticles (AuNPs) were first self-assembled on ITO or Au surfaces modified with (3-mercaptopropyl)-trimethoxysilane (MPTS) sol-gel film and then immersed in a cationic surfactant growth solution to form GNRs. The growth of GNRs on the MPTS sol gel film modified ITO surface was monitored by UV-visible spectroscopy. The ITO surface with the attached spherical AuNPs shows a surface plasmon resonance band at 550 nm. The intensity of this absorption band increases while increasing the immersion time of the AuNP-modified ITO surface into the growth solution, and after 5 h, an additional shoulder band around 680 nm was observed. The intensity of this shoulder band increases, and it was shifted to longer wavelength as the immersion time of the AuNP-modified ITO surface into the growth solution increases. After 20 h, a predominant wave at 720 nm was observed along with a band at 550 nm. Further immersion of the modified ITO surface into the growth solution did not change the absorption characteristics. The bands observed at 550 and 720 nm were characteristics of GNRs, corresponding to transverse and longitudinal waves, respectively. The AFM images showed the presence of GNRs on the surface of the MPTS sol gel modified ITO surface with a typical length of similar to 100-120 nm and a width of similar to 20-22 nm in addition to a few spherical AuNPs, indicating that seeded spherical AuNPs were not completely involved in the GNRs' formation. Finally, the electrocatalytic activity of the surface-grown GNRs on the MPTS sol gel film modified Au electrode toward the oxidation of ascorbic acid (AA) was studied. Unlike a polycrystalline Au electrode, the surface-grown GNR-modified electrode shows two well-defined voltammetric peaks for AA at 0.01 and 0.35 V in alkaline, neutral, and acidic pHs. The cause for the observed two oxidation peaks for AA was due to the presence of both nanorods and spherical nanoparticles on the electrode surface. The presence of spherical AuNPs on the MPTS sol gel film oxidized AA at more positive potential, whereas the GNRs oxidized AA at less positive potential. The observed 340 mV less positive potential shift in the oxidation of AA suggested that GNRs are better electrocatalysts for the oxidation of AA than the spherical AuNPs.
Resumo:
Bioleaching of base metal sulfides, such as pyrite, chalcopyrite, and sphalerite, under the influence of applied direct current (DC) potentials is discussed. Contributions toward mineral dissolution from three effects, namely, galvanic, applied potential, and microbiological, are analyzed and compared. Sphalerite could be selectively bioleached in the presence of Thiobacillus ferrooxidans under an applied potential of -500 mV (SCE) from mixed sulfides containing sphalerite, pyrite, and chalcopyrite. Bacterial activity and growth were found to be promoted under electrobioleaching conditions. Probable mechanisms involved in the bioleaching of different sulfides under positive and negative applied potentials are discussed.
Resumo:
A novel mechanism is proposed for efficient manipulation of transport forces acting on the droplets during spray pyrolytic deposition of thin films. A ‘‘burst mode’’ technique of spraying is used to adjust the deposition conditions so as to transport the droplets under the new mechanism. Transparent, conducting thin films of undoped tin oxide prepared by this method showed significant improvement in growth rate. The films are found to be of fairly good quality with optical transmission of 82% and sheet resistance of 35 Ω/☒. The films are chemically homogeneous and grow preferentially along 〈200〉 direction.
Resumo:
A study is made of the electrooxidation of methanol in sulfuric acid on carbon-supported electrodes containing platinum-tin bimetal catalysts that are prepared by an in situ potentiometric-characterization route. The catalysts are investigated by employing chemical analyses, X-ray diffraction (XRD), X-ray absorption-near-edge spectroscopy (XANES) and X-ray photoelectron spectroscopy (XPS) data in conjunction with electrochemical measurements. From the electrochemical data, it is inferred that while an electrode with (3:1) Pt-Sn/C catalyst involves a two-electron rate-limiting step akin to platinum-on-carbon electrodes, it is shifted to a one-electron mechanism on electrodes with (3:2)Pt-Sn/C, (3:3)Pt-Sn/C, and (3:4)Pt-Sn/C catalysts. The study suggests that the tin content in the platinum-tin bimetal catalyst produces: (i) a charge transfer from tin to platinum; (ii) an increase in the coverage of adsorbed methanolic residues with increase in the tin content, as indicated by the shift in rest potential of the electrodes towards the reversible value for oxidation of methanol (0.043 V versus SHE), and (iii) a decrease in the overall content of higher valent platinum sites in the catalyst.
Resumo:
A study is made of the electrooxidation of methanol in sulfuric acid on carbon-supported electrodes containing platinum-tin bimetal catalysts that are prepared by an in situ potentiometric-characterization route. The catalysts are investigated by employing chemical analyses, X-ray diffraction (XRD), X-ray absorption-near-edge spectroscopy (XANES) and X-ray photoelectron spectroscopy (XPS) data in conjunction with electrochemical measurements. From the electrochemical data, it is inferred that while an electrode with (3:1) Pt-Sn/C catalyst involves a two-electron rate-limiting step akin to platinum-on-carbon electrodes, it is shifted to a one-electron mechanism on electrodes with (3:2)Pt-Sn/C, (3:3)Pt-Sn/C, and (3:4)Pt-Sn/C catalysts. The study suggests that the tin content in the platinum-tin bimetal catalyst produces: (i) a charge transfer from tin to platinum; (ii) an increase in the coverage of adsorbed methanolic residues with increase in the tin content, as indicated by the shift in rest potential of the electrodes towards the reversible value for oxidation of methanol (0.043 V versus SHE), and (iii) a decrease in the overall content of higher valent platinum sites in the catalyst.
Resumo:
Titanium nitride films of a thickness of similar to 1.5 mu m were deposited on amorphous and crystalline substrates by DC reactive magnetron sputtering at ambient temperature with 100% nitrogen in the sputter gas. The growth of nanostructured, i.e. crystalline nano-grain sized, films at ambient temperature is demonstrated. The microstructure of the films grown on crystalline substrates reveals a larger grain size/crystallite size than that of the films deposited on amorphous substrates. Specular reflectance measurements on films deposited on different substrates indicate that the position of the Ti-N 2s band at 2.33 eV is substrate-dependent, indicating substrate-mediated stoichiometry. This clearly demonstrates that not only structure and microstructure, but also chemical composition of the films is substrate-influenced. The films deposited on amorphous substrates display lower hardness and modulus values than the films deposited on crystalline substrates, with the highest value of hardness being 19 GPa on a lanthanum aluminate substrate. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
The beta-cleavage process in photoexcited ketones of structure RCOCH2X (X = CH2CH3, OCH3, SCH3; R = CH3, Ph) has been studied using the configuration interaction procedure within the framework of MINDO/3. The results explain qualitatively why the beta-cleavage process is faster than the alpha-cleavage process in keto sulfides while in keto ethers the reverse is true.
Resumo:
Micelles of different dimeric amphiphiles Br-, n-C(16)H(33)NMe(2)(+) -(CH)(m)-N(+)Me(2)-n-C16H33, Br- (where m = 3, 4, 5, 6, 8, 10, and 12) adapt different morphologies and internal packing arrangements in aqueous media depending on their spacer chain length (m). Detailed measurements of small angle neutron scattering (SANS) cross sections from different bis-cationic, dimeric surfactant micelles in aqueous media (D2O) are reported. The data have been analyzed using the Hayter and Penfold model for macro ion solution to compute the interparticle structure factor S(Q) taking into account the screened Coulomb interactions between the dimeric micelles. The SANS analysis clearly indicated that the extent of aggregate growth and the variations of shapes of the dimeric micelles depend primarily on the spacer chain length. With spacer chain length, m less than or equal to 4, the propensity of micellar growth was particularly pronounced. The effects of the variation of the concentration of dimeric surfactants with m = 5 and 10 on the SANS spectra and the effects of the temperature variation for the micellar system with m = 10 were also examined. The critical micelle concentrations (cmc) and their microenvironmental feature, namely, the microviscosities that the dimeric micellar aggregates offer to a solubilized, extrinsic fluorescence probe, 1,6-diphenyl-1,3,5-hexatriene, were also determined. The changes of cmcs and microviscosities as a function of spacer chain length have been explained in terms of conformational variations and progressive looping of the spacer in micellar core upon increasing m values.
Resumo:
Glasses of the alkali tin phosphate system have been investigated. The infrared absorption and fluorescence spectra of the glasses have been examined. It is found that tin is present in both + 2 and + 4 oxidation states. Also tin ions occupy four- or six-coordinated sites in the glass.
Resumo:
Eight new vesicle-forming dimeric surfactants are synthesized: the polar headgroup separation in such dimeric amphiphiles strongly influences their vesicular thermotropic phase-transition behaviour.
Resumo:
Measurements of small-angle neutron scattering (SANS) cross sections from different mixed micelles composed of CTAB and Br-, n-C16H33N+Me2-(CH2)(m)N+Me2-n-C16H33, Br- (16-m-16, 2Br(-), where m = 3, 5, and 10), in aqueous media (D2O) are reported. The data have been analyzed using the Hayter and Penfold model for macroion solution to compute the interparticle structure factor S(Q) taking into account the screened Coulomb interactions between the micelles. The aggregate composition matches with that predicted from an ideal mixing model. The SANS analysis further indicates that the extent of aggregate growth and the Variations of shapes of the mixed micelles could be modulated by the amount of dimeric surfactant present in these mixtures. With the spacer chain length m less than or equal to 4 in the dimeric surfactant, the propensity of micellar growth is particularly pronounced. The effect of the variation of the temperature for the mixed micellar system (23.1 mol % of 16-3-16, 2Br(-)) was also examined. The systemic microviscosities that the mixed micellar aggregates offer to a solubilized, extrinsic fluorescence probe, 1,6-diphenyl-1,3,5-hexatriene, were determined. The variation of the microviscosities of the mixed micelles as a function of percentages of the dimeric surfactants could be explained in terms of conformational variations and progressive looping of the spacer chain of dimeric surfactants in mixed micellar aggregates with increasing m values.
Resumo:
Eight new bis-cationic dimeric lipids 2a-h have been synthesized; TEM of their aqueous dispersions confirmed the vesicle formation and from the thermal, spectroscopic, DLS and XRD studies it has been revealed that they form three different kinds of membranous aggregate depending on the m-value.
Resumo:
Dimeric or gemini surfactants consist of two hydrophobic chains and two hydrophilic head groups covalently connected by a hydrophobic or hydrophilic spacer. This paper reports the small-angle neutron scattering (SANS) measurements from aqueous micellar solutions of two different recently developed types of dimeric surfactants: (i) bis-anionic C16H33PO4--(CH2)(m)-PO4-C16H33,2Na(+) dimeric surfactants composed of phosphate head groups and a hydrophobic polymethylene spacer, referred to as 16-m-16,2Na(+), for spacer lengths m = 2, 4, 6, and 10, (ii) bis-cationic C16H33N+(CH3)(2)-CH2-(CH2-O-CH2)(p)-CH2-N+ (CH3)(2)C16H33,2Br(-) dimeric surfactants composed of dimethylammonium head groups and a wettable polyethylene oxide spacer, referred to as 16-CH2-p-CH2-16,2Br(-), for spacer lengths p = 1 - 3. The micellar structures of these surfactants are compared with the earlier studied bis-cationic C16H33N+ (CH3)(2)-(CH2)(m)-N+ (CH3)(2)C16H33,2Br(-) dimeric surfactants composed of dimethylammonium head groups and a hydrophobic polymethylene spacer, referred to as 16-m-16,2Br(-). It is found that 16-m-16,2Na(+), similar to 16-m-16,2Br(-), form various micellar structures depending on the spacer length. Micelles an disklike for rn = 2, rodlike for m = 4, and prolate ellipsoidal fur m = 6 and 10. The micelles of 16-CH2-p-CH2-16,2Br(-) are prolate ellipsoidal for all the values of p = 1 - 3. It is also found that micelles of 16-m-16,2Na(+) and 16-CH2-p-CH2-16,2Br(-) are large in comparison to those of 16-in-16,2Br(-) for similar spacer lengths. This is connected with the fact that both in 16-m-16,2Na(+) and 16-CH2-p-CH2-16,2Br(-), the head group or the spacer is more hydrated as compared to that in the 16-m-16,2Br(-). An increase in the hydration of the spacer or the head group increases the screening of the Coulomb repulsion between the charged head groups. This effect has been found to be more pronounced in the dimeric surfactants having wettable spacers. [S1063-651X(99)00303-7].