926 resultados para Declination of principle axis K1
Resumo:
The dorsoventral axis is established early in Xenopus development and may involve signaling by Wnts, a family of Wnt1-protooncogene-related proteins. The protein kinase shaggy functions in the wingless/Wnt signaling pathway, which operates during Drosophila development. To assess the role of a closely related kinase, glycogen synthase kinase 3 beta (GSK-3 beta), in vertebrate embryogenesis, we cloned a cDNA encoding a Xenopus homolog of GSK-3 beta (XGSK-3 beta). XGSK-3 beta-specific transcripts were detected by Northern analysis in Xenopus eggs and early embryos. Microinjection of the mRNA encoding a catalytically inactive form of rat GSK-3 beta into a ventrovegetal blastomere of eight-cell embryos caused ectopic formation of a secondary body axis containing a complete set of dorsal and anterior structures. Furthermore, in isolated ectodermal explants, the mutant GSK-3 beta mRNA activated the expression of neural tissue markers. Wild-type XGSK-3 beta mRNA suppressed the dorsalizing effects of both the mutated GSK-3 beta and Xenopus dishevelled, a proposed upstream signaling component of the same pathway. These results strongly suggest that XGSK-3 beta functions to inhibit dorsoventral axis formation in the embryo and provide evidence for conservation of the Wnt signaling pathway in Drosophila and vertebrates.
Resumo:
Mode of access: Internet.
Resumo:
The Australian beef industry places the greatest value in bulls, in comparison to cows, for prime beef production. Male carcasses can be sold for a larger profit due to their increased muscle mass. This project aims to demonstrate the feasibility of producing male animals that can sire male only offspring, through a transgenic approach in mice that could later be translated into livestock production systems. The mouse Sry (Sex determining region on the Y) gene has been shown to provide the initiating molecular signal leading to male sex determination in mammals. Sry has also been shown to cause sex reversal in XX mice transgenic for the gene. In this project Sry will be targeted to a locus not subject to X-inactivation on the X chromosome of XY mice. These mice will be bred to determine how the transgene is passed on, to determine expression of the transgene, and to assess its activity in causing XX sex reversal. The male mice transgenic for the Sry gene on their X chromosome will be produced using tetraploid aggregation, which in a single step produces 100% ES cell derived embryos. The same target locus can later be used to introduce the bovine SRY gene onto the X chromosome of bovidae species and using germ cell transplantation produce sex reversed animals. This would bypass the need for expensive chimera crosses and provide farmers with a stud bull capable of producing only sons.
Resumo:
The deposition by atomic vapor deposition of highly c-axis-oriented Aurivillius phase Bi 5Ti 3FeO 15 (BTFO) thin films on (100) Si substrates is reported. Partially crystallized BTFO films with c-axis perpendicular to the substrate surface were first deposited at 610°C (8 excess Bi), and subsequently annealed at 820°C to get stoichiometric composition. After annealing, the films were highly c-axis-oriented, showing only (00l) peaks in x-ray diffraction (XRD), up to (0024). Transmission electron microscopy (TEM) confirms the BTFO film has a clear layered structure, and the bismuth oxide layer interleaves the four-block pseudoperovskite layer, indicating the n 4 Aurivillius phase structure. Piezoresponse force microscopy measurements indicate strong in-plane piezoelectric response, consistent with the c-axis layered structure, shown by XRD and TEM.
Resumo:
Quantitative methods can help us understand how underlying attributes contribute to movement patterns. Applying principal components analysis (PCA) to whole-body motion data may provide an objective data-driven method to identify unique and statistically important movement patterns. Therefore, the primary purpose of this study was to determine if athletes’ movement patterns can be differentiated based on skill level or sport played using PCA. Motion capture data from 542 athletes performing three sport-screening movements (i.e. bird-dog, drop jump, T-balance) were analyzed. A PCA-based pattern recognition technique was used to analyze the data. Prior to analyzing the effects of skill level or sport on movement patterns, methodological considerations related to motion analysis reference coordinate system were assessed. All analyses were addressed as case-studies. For the first case study, referencing motion data to a global (lab-based) coordinate system compared to a local (segment-based) coordinate system affected the ability to interpret important movement features. Furthermore, for the second case study, where the interpretability of PCs was assessed when data were referenced to a stationary versus a moving segment-based coordinate system, PCs were more interpretable when data were referenced to a stationary coordinate system for both the bird-dog and T-balance task. As a result of the findings from case study 1 and 2, only stationary segment-based coordinate systems were used in cases 3 and 4. During the bird-dog task, elite athletes had significantly lower scores compared to recreational athletes for principal component (PC) 1. For the T-balance movement, elite athletes had significantly lower scores compared to recreational athletes for PC 2. In both analyses the lower scores in elite athletes represented a greater range of motion. Finally, case study 4 reported differences in athletes’ movement patterns who competed in different sports, and significant differences in technique were detected during the bird-dog task. Through these case studies, this thesis highlights the feasibility of applying PCA as a movement pattern recognition technique in athletes. Future research can build on this proof-of-principle work to develop robust quantitative methods to help us better understand how underlying attributes (e.g. height, sex, ability, injury history, training type) contribute to performance.