87 resultados para DMV
Resumo:
Positive-stranded viruses synthesize their RNA in membrane-bound organelles, but it is not clear how this benefits the virus or the host. For coronaviruses, these organelles take the form of double-membrane vesicles (DMVs) interconnected by a convoluted membrane network. We used electron microscopy to identify murine coronaviruses with mutations in nsp3 and nsp14 that replicated normally while producing only half the normal amount of DMVs under low-temperature growth conditions. Viruses with mutations in nsp5 and nsp16 produced small DMVs but also replicated normally. Quantitative reverse transcriptase PCR (RT-PCR) confirmed that the most strongly affected of these, the nsp3 mutant, produced more viral RNA than wild-type virus. Competitive growth assays were carried out in both continuous and primary cells to better understand the contribution of DMVs to viral fitness. Surprisingly, several viruses that produced fewer or smaller DMVs showed a higher fitness than wild-type virus at the reduced temperature, suggesting that larger and more numerous DMVs do not necessarily confer a competitive advantage in primary or continuous cell culture. For the first time, this directly demonstrates that replication and organelle formation may be, at least in part, studied separately during infection with positive-stranded RNA virus. IMPORTANCE The viruses that cause severe acute respiratory syndrome (SARS), poliomyelitis, and hepatitis C all replicate in double-membrane vesicles (DMVs). The big question about DMVs is why they exist in the first place. In this study, we looked at thousands of infected cells and identified two coronavirus mutants that made half as many organelles as normal and two others that made typical numbers but smaller organelles. Despite differences in DMV size and number, all four mutants replicated as efficiently as wild-type virus. To better understand the relative importance of replicative organelles, we carried out competitive fitness experiments. None of these viruses was found to be significantly less fit than wild-type, and two were actually fitter in tests in two kinds of cells. This suggests that viruses have evolved to have tremendous plasticity in the ability to form membrane-associated replication complexes and that large and numerous DMVs are not exclusively associated with efficient coronavirus replication.
Resumo:
Coronaviruses raise serious concerns as emerging zoonotic viruses without specific antiviral drugs available. Here we screened a collection of 16671 diverse compounds for anti-human coronavirus 229E activity and identified an inhibitor, designated K22, that specifically targets membrane-bound coronaviral RNA synthesis. K22 exerts most potent antiviral activity after virus entry during an early step of the viral life cycle. Specifically, the formation of double membrane vesicles (DMVs), a hallmark of coronavirus replication, was greatly impaired upon K22 treatment accompanied by near-complete inhibition of viral RNA synthesis. K22-resistant viruses contained substitutions in non-structural protein 6 (nsp6), a membrane-spanning integral component of the viral replication complex implicated in DMV formation, corroborating that K22 targets membrane bound viral RNA synthesis. Besides K22 resistance, the nsp6 mutants induced a reduced number of DMVs, displayed decreased specific infectivity, while RNA synthesis was not affected. Importantly, K22 inhibits a broad range of coronaviruses, including Middle East respiratory syndrome coronavirus (MERS-CoV), and efficient inhibition was achieved in primary human epithelia cultures representing the entry port of human coronavirus infection. Collectively, this study proposes an evolutionary conserved step in the life cycle of positive-stranded RNA viruses, the recruitment of cellular membranes for viral replication, as vulnerable and, most importantly, druggable target for antiviral intervention. We expect this mode of action to serve as a paradigm for the development of potent antiviral drugs to combat many animal and human virus infections.
Resumo:
The deep Black Sea is known to be depleted in electron-acceptors for sulphide oxidation. This study on depth distributions of sulphur species (S(II), S(0),S(n)**2-,S2O3**2-,SO3**2-,SO4**2-) in the Dvurechenskii mud volcano, a cold seep situated in the permanently anoxic eastern Black Sea basin (Sorokin Trough, 2060 m water depth), showed remarkable concentrations of sulphide oxidation products. Sulphite concentrations of up to 11 µmol L**1-, thiosulphate concentrations of up to 22 µmol L**1-, zero-valent sulphur concentrations of up to 150 µmol L**1- and up to five polysulphide species were measured in the upper 20 cm of the sediment. Electron-acceptors found to be available in the Dvurechenskii mud volcano (DMV) for the oxidation of hydrogen sulphide to sulphide oxidation intermediates are iron-minerals, and probably also reactive manganese phases. Up to 60 µmol g**1- of reactive iron-minerals and up to 170 µmol L**1- dissolved iron was present in the central summit with the highest fluid upflow and fresh mud outflow. Thus, the source for the oxidative power in the DMV are reactive iron phases extruded with the mud from an ancient source in the deeply buried sediments, leading to the formation of various sulphur intermediates in comparably high concentrations. Another possible source of sulphide oxidation intermediates in DMV sediments could be the formation of zero-valent sulphur by sulphate dependent anaerobic microbial oxidation of methane followed by disproportionation of zero-valent sulphur. Sulphide oxidation intermediates, which are produced by these processes, do not reach thermodynamic equilibrium with rhombic sulphur, especially close to the active center of the DMV due to a short equilibration time. Thus, mud volcano sediments, such as in the DMV, can provide oxidizing niches even in a highly reduced environment like the abyssal part of the Black Sea.
Resumo:
The Dvurechenskii mud volcano (DMV), located in permanently anoxic waters at 2060 m depth (Sorokin Trough, Black Sea), was visited during the M72/2 cruise with the RV Meteor to investigate the methane and sulfide release from mud volcanoes into the Black Sea hydrosphere. We studied benthic fluxes of methane and sulfide, and the factors controlling transport, consumption and production of both compounds within the sediment. The pie shaped mud volcano showed temperature anomalies as well as solute and gas fluxes indicating high fluid flow at a small elevation north of the geographical center. The anaerobic oxidation of methane (AOM) coupled to sulfate reduction (SR) was excluded from this zone due to fluid-flow induced sulfate limitation and a fresh mud flow and consequently methane escaped into the water column with a rate of 0.46 mol/m**2/d. In the outer center of the mud volcano fluid flow and total methane flux were decreased, correlating with an increase in sulfate penetration into the sediment, and with higher SR and AOM rates. Here between 50-70% of the methane flux (0.07-0.1 mol/m**2/d) was consumed within the upper 10 cm of the sediment. Also at the edge of the mud volcano fluid flow and rates of methane and sulfate turnover were substantial. The overall amount of dissolved methane released from the mud volcano into the water column was significant with a discharge of 1.4x10**7 mol/yr. The DMV maintains also high areal rates of methane-fueled sulfide production of on average 0.05 mol/m**2/d. However, we concluded that sulfide and methane emission into the hydrosphere from deep water mud volcanoes does not significantly contribute to the sulfide and methane inventory of the Black Sea.
Resumo:
During the MARGASCH cruise M52/1 in 2001 with RV Meteor we sampled surface sediments from three stations in the crater of the Dvurechenskii mud volcano (DMV, located in the Sorokin Trough of the Black Sea) and one reference station situated 15 km to the northeast of the DMV. We analysed the pore water for sulphide, methane, alkalinity, sulphate, and chloride concentrations and determined the concentrations of particulate organic carbon, carbonate and sulphur in surface sediments. Rates of anaerobic oxidation of methane (AOM) were determined using a radiotracer (14CH4) incubation method. Numerical transport-reaction models were applied to derive the velocity of upward fluid flow through the quiescently dewatering DMV, to calculate rates of AOM in surface sediments, and to determine methane fluxes into the overlying water column. According to the model, AOM consumes 79% of the average methane flux from depth (8.9 x 10**+ 6 mol a**-1), such that the resulting dissolved methane emission from the volcano into the overlying bottom water can be determined as 1.9 x 10**+ 6 mol a**-1. If it is assumed that all submarine mud volcanoes (SMVs) in the Black Sea are at an activity level like the DMV, the resulting seepage represents less than 0.1% of the total methane flux into this anoxic marginal sea. The new data from the DMV and previously published studies indicate that an average SMV emits about 2.0 x 10**+ 6 mol a**-1 into the ocean via quiescent dewatering. The global flux of dissolved methane from SMVs into the ocean is estimated to fall into the order of 10**+10 mol a**-1. Additional methane fluxes arise during periods of active mud expulsion and gas bubbling occurring episodically at the DMV and other SMVs.
Resumo:
La neuralgia del trigémino (NT) es un síndrome doloroso facial caracterizado por un dolor neuropático paroxístico irradiado al territorio sensitivo del nervio trigémino. A lo largo de las últimas décadas la creciente evidencia experimental y clínica ha contribuido a establecer la teoría de una compresión neurovascular (CNV) del nervio trigémino como causa fundamental de este trastorno. Esta teoría apoya el tratamiento quirúrgico de la NT mediante una descompresión microvascular (DMV). Actualmente la DMV es aceptada como la primera opción de tratamiento quirúrgico de la NT refractaria a tratamiento médico. Pese a la cantidad de trabajos que analizan la utilidad de la RM preoperatoria con secuencias de alta resolución volumétricas potenciadas en T2 (RM 3DT2), no hay unanimidad respecto a la precisión de estas secuencias de RM para el diagnóstico y la caracterización de una posible CNV en pacientes con NT refractaria candidatos a tratamiento mediante DMV...
Resumo:
THE ROAD FROM EMMAUS is a collection of 20 personal and lyric essays that explores the narrator’s role as mother and daughter through a close look at significant life events, including her parents’ divorce, a high-risk pregnancy, the death of her father, talking to her daughter for the first time about sex, and accompanying her daughter to the DMV for a learner’s permit. Through examining familial roles and relationships, the narrator’s longing for home emerges as a unifying theme. The essays in THE ROAD FROM EMMAUS vary in style and tone, from light and funny to serious and probing. The collection is divided into five sections, each highlighting a different aspect of the narrator’s life as she evolves from a child, to a young adult, a mother, and a daughter who must help take care of her aging parents.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico - CNPq
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico - CNPq
Resumo:
The sediment temperature distribution at mud volcanoes provides insights into their activity and into the occurrence of gas hydrates. If ambient pressure and temperature conditions are close to the limits of the gas hydrate stability field, the sediment temperature distribution not only limits the occurrence of gas hydrates, but is itself influenced by heat production and consumption related to the formation and dissociation of gas hydrates. Located in the Sorokin Trough in the northern Black Sea, the Dvurechenskii mud volcano (DMV) was in the focus of detailed investigations during the M72/2 and M73/3a cruises of the German R/V Meteor and the ROV Quest 4000 m in February and March 2007. A large number of in-situ sediment temperature measurements were conducted from the ROV and with a sensor-equipped gravity corer. Gas hydrates were sampled in pressurized cores using a dynamic autoclave piston corer (DAPC). The thermal structure of the DMV suggests a regime of fluid flow at rates decreasing from the summit towards the edges of the mud volcano, accompanied by intermittent mud expulsion at the summit. Modeled gas hydrate dissociation temperatures reveal that the gas hydrates at the DMV are very close to the stability limits. Changes in heat flow due to variable seepage rates probably do not result in changes in sediment temperature but are compensated by gas hydrate dissociation and formation.
Resumo:
BACKGROUND In the last 20 years, Cetacean Morbillivirus (CeMV) has been responsible for many die-offs in marine mammals worldwide, as clearly exemplified by the two dolphin morbillivirus (DMV) epizootics of 1990-1992 and 2006-2008, which affected Mediterranean striped dolphins (Stenella coeruleoalba). Between March and April 2011, the number of strandings on the Valencian Community coast (E Spain) increased. CASE PRESENTATION Necropsy and sample collection were performed in all stranded animals, with good state of conservation. Subsequently, histopathology, immunohistochemistry, conventional reverse transcription polymerase chain reaction (RT-PCR) and Universal Probe Library (UPL) RT-PCR assays were performed to identify Morbillivirus. Gross and microscopic findings compatible with CeMV were found in the majority of analyzed animals. Immunopositivity in the brain and UPL RT-PCR positivity in seven of the nine analyzed animals in at least two tissues confirmed CeMV systemic infection. Phylogenetic analysis, based on sequencing part of the phosphoprotein gene, showed that this isolate is a closely related dolphin morbillivirus (DMV) to that responsible for the 2006-2008 epizootics. CONCLUSION The combination of gross and histopathologic findings compatible with DMV with immunopositivity and molecular detection of DMV suggests that this DMV strain could cause this die-off event.
Resumo:
The Supplier-Relationship Management system is used by SC Department of Motor Vehicles personnel to requisition most purchases of services and materials for DMV purposes. General ledger account codes are first assigned by the shopping cart preparer. Administrative departments such as procurement, payables and budget regularly correct general ledger codes during the purchasing cycle to ensure proper reporting. DMV goals are consistent with accurate reporting of expenditures by general ledger account code. Incorrect reporting would be contrary to DMV' s vision of promoting effective and efficient business processes. Journal entries increased from 34 to 66 in FY2014 and FY20152 ; with a notable amount correcting the general ledger code. This project examines the assignment or correction of general ledger account codes for DMV's planned purchases for the purpose of process improvement.