945 resultados para DIBLOCK COPOLYMERS


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Self-assembled behavior of T-shaped rod-coil block copolymer melts is studied by applying self-consistent-field lattice techniques in three-dimensional space. Compared with rod-coil diblock copolymers with the anchor point positioned at one end, the copolymers with the anchor point at the middle of the rod exhibit significantly different phase behaviors. When the rod volume fraction is low, the steric hindrance of the lateral coils prevents the rods stacking into strip or micelle as that in rod-coil diblock copolymers. The competition between interfacial energy and entropy results in the formation of lamellar structures and the increasing thickness of the lamellar layer with increasing rod volume fraction.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We study the interplay between microphase assembly and macrophase separation in A/B/AB ternary polymer blends by examining the free energy of localized fluctuation structures (micelles or droplets), with emphasis on the thermodynamic relationship between swollen micelles (microemulsion) and the macrophase-separated state, using self-consistent field theory and an extended capillary model. Upon introducing homopolymer B into a micelle-forming binary polymer blend A/AB, micelles can be swollen by B. A small amount of component B (below the A-rich binodal of macrophase coexistence) will not affect the stability of the swollen micelles. A large excess of homopolymer, B, will induce a microemulsion failure and lead to a macrophase separation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Novel bump-surface multicompartment micelles formed by a linear amphiphilic ABC triblock copolymer via self-assembly in selective solvent were successfully observed both in simulation and experiment. The results revealed that the block A forms the most inner core, and the blocks B and C form the inner and outer layers, respectively, and the bumps were formed by block A and more likely to be born on curving surfaces. Moreover, the micelle shape could be controlled by changing the solvent selectivity of the blocks A and B. Spherical, cylindrical, and discoidal micelles with bumpy surfaces were obtained both in experiment and simulation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We have investigated the effect of Shear flow on the formation of rill.-shaped ABA triblock copolymer (P4VP(43)-b-PS260-b-P4VP(43)) micelles. The results reveal that Shear flow Plays an important role in the formation of the rings Both ring size and its, distribution are found to be dependent sensitively on the stirring rate. Sizable rings are more likely to be formed at moderate stirring rate, Interestingly, the ring formation mechanism is also dependent oil the Shear flow. Copolymers are likely to form rings via end-to-end cylinder connection at low stirring rates, whereas they tend to form rings via the pathway of the rod-sphere-vesicle-ring it high stirring rates.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Self-assembling of synthesized novel biodegradable hyperbranched amphiphilic poly(ethylene glycol)-polyethylenimine-poly(epsilon-benzyloxycarbonyl-L-lysine) (PEG-PEI-PLys(Z)) in aqueous media is studied. In aqueous media. PLys(Z) is the hydrophobic segment, with PEG and PEI as the hydrophilic segments. It will self-assemble into spherical shape when the selected solvent water is dropped into the common solvent tetrahydrofuran (THF). And when PEG-PEI-PLYS in common solvent is dropped into mixed solvent water and THF, rings will come into King. The spherical and rings are observed by environmental scanning electron microscopy (ESEM) and transmission electron microscopy ITEM). It shows that the size of the sphere is about 100 nm, and the diameter of ring distributes from 400 nm to 10 mu m and bigger with the time roll around.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In polystyrene-block-poly(ethylene oxide) thin square platelets can be obtained via fast solvent evaporation by controlling the tethering density (0.08 < sigma < 0.11). The tethering density of the brushes is proportional to the thickness of the PEO crystal and increases with increasing initial solution heating temperature (T-i). When T-i < T-m, where T-m is the melting point of PEO, brushes with microphase-separated structures are observed. The formation of microphase-separated brushes depends on two factors: the strong incompatibility between PS and noncrystalline PEO chains (attached to the crystalline PEO) and the weak interaction between PS-PS brushes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A biodegradable amphiphilic block copolymer, PEG-b-P(LA-co-MAC), was used to prepare spherical micelles consisting of a hydrophobic P(LA-co-MAC) core and a hydrophilic PEG shell. To improve their stability, the micelles were crosslinked by radical polymerization of the double bonds in the hydrophobic blocks. The crosslinked micelles had similar sizes and a narrow size distribution compared to their uncrosslinked precursor. The improved stability of the crosslinked micelles was confirmed by measurements of the CMC and a thermodynamic investigation. These micelles can internalize into Hela cells in vitro as demonstrated by inverted fluorescence microscopy and CLSM. These stabilized nanoscale micelles have potential use in biomedical applications such as drug delivery and disease diagnosis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

novel biodegradable Y-shaped copolymer, poly(L-lactide)(2)-b-poly(gamma-benzyl-L-glutamic acid) (PLLA(2)-b-PBLG), was synthesized by the ring-opening polymerization (ROP) of N-carboxyanhydride of gamma-benzyl-L-glutamate (BLG-NCA) with centrally amino-functionalized poly(L-lactide), PLLA(2)-NH2, as a macroinitiator in a convenient way. The Y-shaped copolymer and its precursors were characterized by H-1 NMR, FT-IR, GPC, WAXD and DSC measurements. The self-assembly of the PLLA(2)-b-PBLG copolymer in toluene and benzyl alcohol was examined. It was found that the self-assembly of the copolymer was dependent on solvent and on relative length of the PBLG block. For a copolymer with PLLA blocks of 26 in total degree of polymerization (DP), if the PBLG block was long enough (e.g., DP = 54 or more), the copolymer/toluene solution became a transparent gel at room temperature. In benzyl alcohol Solution, only PLLA(2)-b-PBLG containing ca. 190 BLG residues could form a gel: those with shorter PBLG blocks (e.g., DP = 54) became nano-scale fibrous aggregates and these aggregates were dispersed in benzyl alcohol homogeneously.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We have synthesized macrocyclic polystyrene- (PS-) terminated PS star polymers via a core-cross-linking approach in this work. A tadpole-shaped macrocyclic PS-linear-PS copolymer was synthesized at first via click chemistry and ATRP polymerization method. The "living" ATRP initiating chain-ends of the tadpole-shaped copolymers were linked together via ATRP polymerization with divinylbenzene to form a core-cross-linked macrocyclic star polymer. The number of arms attached to the macrocyclic star polymers was measured with NMR. and absolute molecular weights with gel permeation chromatography (GPC) with multiangle laser light scattering detector. These macrocyclic star polymers had a highly cross-linked core and many radiating arms. The shorter tadpole-shaped precursors caused core-cross-linked star polymers with higher molecular weights and more arm numbers. The macrocycle-terminated core-cross-linked star polymers showed two glass transition temperatures, one arising from the linear branches and another from the macrocycles.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An oxygen carrier was prepared by encapsulating carbonylated hemoglobin (CO-Hb) molecules into polypeptide vesicles made from poly(L-lysine)-block-poly(L-phenylalanine) (PLL-b-PPA) diblock copolymers in aqueous medium at pH 5.8. The encapsulation was confirmed by confocal laser scanning microscopy (CLSM). The morphology and size of the Vesicles were studied by field-emission scanning electron microscopy (ESEM). They had a spherical shape with it mean diameter of about 4 to 5 mu m. The encapsulation efficiency of hemoglobin was 40 wt %, and the hemoglobin content in the vesicles was 32 wt %. The CO-Hb encapsulated in the PLL-b-PPA vesicles was more stable than free CO-Hb under ambient conditions, In the presence of a O-2 atmosphere, the CO-Hb in the vesicle could be converted into oxygen-binding hemoglobin (O-2-Hb) under irradiation of visible light for 2 h. Therefore, the CO-Hb/PLL-b-PPA vesicles are expected to be used its red blood cell substitutes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The coupling of drugs to macromolecular carriers received an important impetus from Ringsdorf's notion of polymer-drug conjugates. Several water-soluble polymers, poly(ethylene glycol), poly[N-(2-hydroxypropyl) methacrylamidel, poly(L-glutamic acid) and dextran, are studied intensively and have been utilized successfully in clinical research. The promising results arising from clinical trials with polymer-drug conjugates (e.g., paclitaxel, doxorubicin, camptothecins) have provided a firm foundation for other synthetic polymers, especially biodegradable polymers, used as drug delivery vehicles. This review discusses biodegradable polymeric micelles as an alternative drug-conjugate system. Particular focus is on A-B or B-A-B type biodegradable amphiphilic block copolymer such as polylactide, morpholine-2,5-dione derivatives and cyclic carbonates, which can form a core-shell micellar structure, with the hydrophobic drug-binding segment forming the hydrophobic core and the hydrophilic segment as a hydrated outer shell. Polymeric micelles can be designed to avoid uptake by cells of reticuloendothelial system and thus enhance their blood lifetime via the enhanced permeability and retention effect.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A novel fluorescent dye labeled H-shaped block copolymer, (PMMA-Fluor-PS)(2)-PEO-(PS-Fluor-PMMA)(2), is synthesized by the combination of atom transfer radical polymerization (ATRP) and anionic polymerization (AP). To obtain the designated structure of the copolymer, a macroinitiator, 2,2-dichloro acetyl-PEO-2,2-dichloro acetyl (DCA-PEO-DCA), was prepared from DCAC and poly(ethylene oxide). The copolymer was characterized by H-1 NMR, GPC and fluorescence spectroscopy.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The functionalization of monomer units in the form of macroinitiators in an orthogonal fashion yields more predictable macromolecular architectures and complex polymers. Therefore, a new there exists E-shaped amphiphilic block copolymer, (PMMA)(2)-PEO-(PS)(2)-PEO-(PMMA)(2) [where PMMA is poly(methyl methacrylate), PEO is poly (ethylene oxide), and PS is polystyrene], has been designed and successfully synthesized by the combination of atom transfer radical polymerization (ATRP) and living anionic polymerization. The synthesis of meso-2,3-dibromosuccinic acid acetate/diethylene glycol was used to initiate the polymerization of styrene via ATRP to yield linear (HO)(2)-PS2 with two active hydroxyl groups by living anionic polymerization via diphenylmethylpotassium to initiate the polymerization of ethylene oxide. Afterwards, the synthesized miktoarm-4 amphiphilic block copolymer, (HO-PEO)(2)-PS2, was esterified with 2,2-dichloroacetyl chloride to form a macroinitiator that initiated the polymerization of methyl methacrylate via ATRP to prepare the there exists E-shaped amphiphilic block copolymer.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We have studied, both experimentally and theoretically, the aggregation morphology of the ABA amphiphilic triblock copolymer in dilute solution by changing the solvent property. Experimental results showed that the micellar morphology changed from spheres to rods and then to vesicles by changing the common solvent from N-N-dimethylformamide (DMF) to dioxane and then to tetrahydrofuran (THF). These controllable aggregates were also obtained by Monte Carlo simulation. The simulative results showed that the solvent property is a key factor that determines the copolymer aggregation morphology. The morphology changed from spheres to rods and then to vesicles by increasing the solvent solubility, corresponding to the change of stretched of the copolymer chains in the micellar cores. This result is in good agreement with the experimental one. Moreover, the simulative results revealed that the end-to-end distant of the ABA triblock copolymer in the vesicle was larger than that in the spheres and rods, indicating that the copolymer chains were more stretched in vesicles than in the spheres and rods. Furthermore, we gave the distribution of the fraction of the chain number with the end-to-end distance. The results indicated that the amount of folded chains is almost the same as that of stretched chains in the vesicle. Although most chains were folded, stretched chains could be found in the rod and sphere micelles.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Various metallized nanostructures (such as rings, wires with controllable lengths, spheres) have been successfully fabricated by coating metallic nanolayers onto soft nanotemplates through simple electroless methods. In particular, bimetallic nanostructures have been obtained by using simple methods. The multiple functional polymeric nanostructures, were obtained through the self-assembly of polystyrene/poly(4-vinyl pyridine) triblock copolymer (P4VP-b-PS-b-P4VP) in selective media by changing the common solvent properties. By combining field emission scanning electron microscopy (SEM), atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS) characterization, it was confirmed that polymer/metal and bimetallic (Au@Ag) core-shell nanostructures could be achieved by chemical metal deposition method.