997 resultados para Crystal Composition


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Manganese oxide minerals have been used for thousands of years—by the ancients for pigments and to clarify glass, and today as ores of Mn metal, catalysts, and battery material. More than 30 Mn oxide minerals occur in a wide variety of geological settings. They are major components of Mn nodules that pave huge areas of the ocean floor and bottoms of many fresh-water lakes. Mn oxide minerals are ubiquitous in soils and sediments and participate in a variety of chemical reactions that affect groundwater and bulk soil composition. Their typical occurrence as fine-grained mixtures makes it difficult to study their atomic structures and crystal chemistries. In recent years, however, investigations using transmission electron microscopy and powder x-ray and neutron diffraction methods have provided important new insights into the structures and properties of these materials. The crystal structures for todorokite and birnessite, two of the more common Mn oxide minerals in terrestrial deposits and ocean nodules, were determined by using powder x-ray diffraction data and the Rietveld refinement method. Because of the large tunnels in todorokite and related structures there is considerable interest in the use of these materials and synthetic analogues as catalysts and cation exchange agents. Birnessite-group minerals have layer structures and readily undergo oxidation reduction and cation-exchange reactions and play a major role in controlling groundwater chemistry.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Major and trace element profiles of clinopyroxene grains in oceanic gabbros from ODP Hole 735B have been investigated by a combined in situ analytical study with ion probe, and electron microprobe. In contrast to the homogeneous major element compositions, trace elements (REE, Y, Cr, Sr, and Zr) show continuous core to rim zoning profiles. The observed trace element systematics in clinopyroxene cannot be explained by a simple diffusive exchange between melts and gabbros along grain boundaries. A simultaneous modification of the melt composition is required to generate the zoning, although Rayleigh fractional crystallization modelling could mimic the general shape of the profiles. Simultaneous metasomatism between the cumulate crystal and the porous melt during crystal accumulation is the most likely process to explain the zoning. Deformation during solidification of the crystal mush could have caused squeezing out of the incompatible element enriched residual melts (interstitial liquid). Migration of the melt along grain boundaries might carry these melt out of the system. This process named as synkinematic differentiation or differentiation by deformation (Natland and Dick, 2001, doi:10.1016/S0377-0273(01)00211-6) may act as an important magma evolution mechanism in the oceanic crust, at least at slow-spreading ridges.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Phyric basalts recovered from DSDP Legs 45 and 46 contain abundant plagioclase phenocrysts which occur as either discrete single grains (megacrysts) or aggregates (glomerocrysts) and which are too abundant and too anorthitic to have crystallized from a liquid with the observed bulk rock composition. Almost all the plagioclase crystals are complexly zoned. In most cases two abrupt and relatively large compositional changes associated with continuous internal morphologic boundaries divide the plagioclase crystals into three parts: core, mantle and rim. The cores exhibit two major types of morphology: tabular, with a euhedral to slightly rounded outline; or a skeletal inner core wrapped by a slightly rounded homogeneous outer core. The mantle region is characterized by a zoning pattern composed of one to several spikes/plateaus superimposed on a gently zoned base line, with one large plateau always at the outside of the mantle, and by, in most cases, a rounded internal morphology. The inner rim is typically oscillatory zoned. The width of the outer rim can be correlated with the position of the individual crystal in the basalt pillow. The presence of a skeletal inner core and the concentration of glass inclusions in low-An zones in the mantle region suggest that the liquid in which these parts of the crystals were growing was undercooled some amount. The resorption features at the outer margins of low-An zones indicate superheating of the liquid with respect to the crystal. It is proposed that the plagioclase cores formed during injection of primitive magma into a previously existing magma chamber, that the mantle formed during mixing of a partially mixed magma and the remaining magma already in the chamber, and that the inner rim formed when the mixed magma was in a sheeted dike system. The large plateau at the outside of the mantle may have formed during the injection of the next batch of primitive magma into the main chamber, which may trigger an eruption. This model is consistent with fluid dynamic calculations and geochemically based magma mixing models, and is suggested to be the major mechanism for generating the disequilibrium conditions in the magma.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Among the Solar System’s bodies, Moon, Mercury and Mars are at present, or have been in the recent years, object of space missions aimed, among other topics, also at improving our knowledge about surface composition. Between the techniques to detect planet’s mineralogical composition, both from remote and close range platforms, visible and near-infrared reflectance (VNIR) spectroscopy is a powerful tool, because crystal field absorption bands are related to particular transitional metals in well-defined crystal structures, e.g., Fe2+ in M1 and M2 sites of olivine or pyroxene (Burns, 1993). Thanks to the improvements in the spectrometers onboard the recent missions, a more detailed interpretation of the planetary surfaces can now be delineated. However, quantitative interpretation of planetary surface mineralogy could not always be a simple task. In fact, several factors such as the mineral chemistry, the presence of different minerals that absorb in a narrow spectral range, the regolith with a variable particle size range, the space weathering, the atmosphere composition etc., act in unpredictable ways on the reflectance spectra on a planetary surface (Serventi et al., 2014). One method for the interpretation of reflectance spectra of unknown materials involves the study of a number of spectra acquired in the laboratory under different conditions, such as different mineral abundances or different particle sizes, in order to derive empirical trends. This is the methodology that has been followed in this PhD thesis: the single factors previously listed have been analyzed, creating, in the laboratory, a set of terrestrial analogues with well-defined composition and size. The aim of this work is to provide new tools and criteria to improve the knowledge of the composition of planetary surfaces. In particular, mixtures composed with different content and chemistry of plagioclase and mafic minerals have been spectroscopically analyzed at different particle sizes and with different mineral relative percentages. The reflectance spectra of each mixture have been analyzed both qualitatively (using the software ORIGIN®) and quantitatively applying the Modified Gaussian Model (MGM, Sunshine et al., 1990) algorithm. In particular, the spectral parameter variations of each absorption band have been evaluated versus the volumetric FeO% content in the PL phase and versus the PL modal abundance. This delineated calibration curves of composition vs. spectral parameters and allow implementation of spectral libraries. Furthermore, the trends derived from terrestrial analogues here analyzed and from analogues in the literature have been applied for the interpretation of hyperspectral images of both plagioclase-rich (Moon) and plagioclase-poor (Mars) bodies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Andean Southern Volcanic Zone (SVZ) is a vast and complex continental arc that has been studied extensively to provide an understanding of arc-magma genesis, the origin and chemical evolution of the continental crust, and geochemical compositions of volcanic products. The present study focuses on distinguishing the magma/sub-arc crustal interaction of eruptive products from the Azufre-Planchon-Peteroa (APP 35°15'S) volcanic center and other major centers in the Central SVZ (CSVZ 37°S–42°S), Transitional SVZ (TSVZ 34.3–37.0°S), and Northern SVZ (NSVZ 33°S–34°30'S). New Hf and Nd isotopic and trace element data for SVZ centers are consistent with former studies that these magmas experienced variable depths of crystal fractionation, and that crustal assimilation is restricted to the lower crustal depths with an apparent role of garnet. Thermobarometric calculations applied to magma compositions constrain the depth of magma separation from mantle sources in all segments of the SVZ to(70-90 km). Magmatic separation at the APP complex occurs at an average depth of ~50 km which is confined to the mantle lithosphere and the base of the crust suggesting localized thermal abrasion both reservoirs. Thermobarometric calculations indicate that CSVZ primary magmas arise from a similar average depth of (~54 km) which confines magma separation to the asthenospheric mantle. The northwards along-arc Sr-Nd-Hf isotopic data and LREE enrichment accompanied with HREE depletion of SVZ mafic magmas correlates well with northward increasing crustal thickness and decreasing primary melt separation from mantle source regions indicating an increased involvement of lower crustal components in SVZ magma petrogenesis. ^ The study concludes that the development of mature subduction zones over millions of years of continuous magmatism requires that mafic arc derived melts stagnate at lower crustal levels due to density similarities and emplace at lower crustal depths. Basaltic underplating creates localized hot zone environments below major magmatic centers. These regions of high temperature/partial melting, and equilibration with underplated mafic rocks provides the mechanism that controls trace element and isotopic variability of primary magmas of the TSVZ and NSVZ from their baseline CSVZ-like precursors.^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The solid-state pyrolysis of organometallic derivatives of a cyclotriphosphazene is demonstrated to be a new, simple and versatile solid-state templating method for obtaining single-crystal micro- and nanocrystals of transition and valve metal oxides. The technique, when applied to Mo-containing organometallics N3P3[OC6H4CH2CN·Mo(CO)5]6 and N3P3[OC6H4CH2CN·Mo(CO)4 py]6, results in stand-alone and surface-deposited lamellar MoO3 single crystals, as determined by electron and atomic force microscopies and X-ray diffraction. The size and morphology of the resulting crystals can be tuned by the composition of the precursor. X-ray photoelectron and infrared spectroscopies indicate that the deposition of highly lamellar MoO3 directly on an oxidized (400 nm SiO2) surface or (100) single-crystal silicon surfaces yields a layered uniphasic single-crystal film formed by cluster diffusion on the surface during pyrolysis of the metal-carbonyl derivatives. For MoO3 in its layered form, this provides a new route to an important intercalation material for high energy density battery materials.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Crystallization is the critical process used by pharmaceutical industries to achieve the desired size, size distribution, shape and polymorphism of a product material. Control of these properties presents a major challenge since they influence considerably downstream processing factors. Experimental work aimed at finding ways to control the crystal shape of Lacosamide, an active pharmaceutical ingredient developed by UCB Pharma, during crystallization was carried out. It was found that the crystal lattice displayed a very strong unidirectional double hydrogen bonding, which was at the origin of the needle shape of the Lacosamide crystals. Two main strategies were followed to hinder the hydrogen bonding and compete with the addition of a Lacosamide molecule along the crystal length axis: changing the crystallization medium or weakening the hydrogen bonding. Various solvents were tested to check whether the solvent used to crystallize Lacosamide had an influence on the final crystal shape. Solvent molecules seemed to slow down the growth in the length axis by hindering the unidirectional hydrogen bonding of Lacosamide crystals, but not enough to promote the crystal growth in the width axis. Additives were also tested. Certain additives have shown to compete in a more efficient way than solvent molecules with the hydrogen bonding of Lacosamide. The additive effect has also shown to be compatible with the solvent effect. In parallel, hydrogen atoms in Lacosamide were changed into deuterium atoms in order to weaken the hydrogen bonds strength. Weakening the hydrogen bonds of Lacosamide allowed to let the crystal grow in the width axis. Deuteration was found to be combinable with solvent effect while being in competition with the additive effect. The Lacosamide molecule was eventually deemed an absolute needle by the terms of Lovette and Doherty. The results of this dissertation are aimed at contributing to this classification.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ocean acidification will likely have negative impacts on invertebrates producing skeletons composed of calcium carbonate. Skeletal solubility is partly controlled by the incorporation of "foreign" ions (e.g. magnesium) into the crystal lattice of these skeletal structures, a process that is sensitive to a variety of biological and environmental factors. Here we explore effects of life stage, oceanographic region of origin, and changes in the partial pressure of carbon dioxide in seawater (pCO2) on trace elemental composition in the purple sea urchin (Strongylocentrotus purpuratus). We show that, similar to other urchin taxa, adult purple sea urchins have the ability to precipitate skeleton composed of a range of biominerals spanning low- to high-Mg calcites. Mg / Ca and Sr / Ca ratios were substantially lower in adult spines compared to adult tests. On the other hand, trace elemental composition was invariant among adults collected from four oceanographically distinct regions spanning a range of carbonate chemistry conditions (Oregon, Northern California, Central California, and Southern California). Skeletons of newly settled juvenile urchins that originated from adults from the four regions exhibited intermediate Mg / Ca and Sr / Ca between adult spine and test endmembers, indicating that skeleton precipitated during early life stages is more soluble than adult spines and less soluble than adult tests. Mean skeletal Mg / Ca or Sr / Ca of juvenile skeleton did not vary with source region when larvae were reared under present-day, global-average seawater carbonate conditions (400 µatm; pHT = 8.02 ± 0.03 1 SD; Omega calcite = 3.3 ± 0.2 1 SD). However, when reared under elevated pCO2 (900 µatm; pHT = 7.73 ± 0.03; Omega calcite = 1.8 ± 0.1), skeletal Sr / Ca in juveniles exhibited increased variance across the four regions. Although larvae from the northern populations (Oregon, Northern California, Central California) did not exhibit differences in Mg or Sr incorporation under elevated pCO2 (Sr / Ca = 2.10 ± 0.06 mmol/mol; Mg / Ca = 67.4 ± 3.9 mmol/mol), juveniles of Southern California origin partitioned ~8% more Sr into their skeletons when exposed to higher pCO2 (Sr / Ca = 2.26 ± 0.08 vs. 2.09 ± 0.005 mmol/mol 1 SD). Together these results suggest that the diversity of carbonate minerologies present across different skeletal structures and life stages in purple sea urchins does not translate into an equivalent geochemical plasticity of response associated with geographic variation or temporal shifts in seawater properties. Rather, composition of S. purpuratus skeleton precipitated during both early and adult life history stages appears relatively robust to spatial gradients and predicted future changes in carbonate chemistry. An exception to this trend may arise during early life stages, where certain populations of purple sea urchins may alter skeletal mineral precipitation rates and composition beyond a given pCO2 threshold. This potential for geochemical plasticity during early development in contrast to adult stage geochemical resilience adds to the growing body of evidence that ocean acidification can have differing effects across organismal life stages.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper reviews the state of the art in processing and extraction of ocean floor manganese nodules. It briefly reviews the mining sites where the abundant rich nodules occur and also discusses the metal distribution in nodules in view of economical processing and extraction of these metal values. The paper discloses in a detailed manner the physical and chemical characteristics of nodules, including porosity, surface area, water content and the effect of temperature on crystal structure of major constituents of nodules. In the extraction aspect of nodules, the paper reviews two different extraction schemes revealed in the literature, namely hydrometallurgical treatment and pyrometallurgical treatment. The hydrometallurgical treatments include acid leaching, ammonia leaching, leaching with reducing agents and leaching after high temperature pre-treatments such as in sulfating rousting, while the pyrometallurgical processes include smelting, chlorination-vaporization and segregation. The paper also covers metal recovery processes from leach liquor. An economic survey of processing nodules has been made in terms of problems associated with metal-marketing, and impact of metal production from nodules on mineral industries.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Raman spectra at 77 K of the hydroxyl stretching of kaolinite were obtained along the three axes perpendicular to the crystal faces. Raman bands were observed at 3616, 3658 and 3677 cm−1 together with a distinct band observed at 3691 cm−1 and a broad profile between 3695 and 3715 cm−1. The band at 3616 cm−1 is assigned to the inner hydroxyl. The bands at 3658 and 3677 cm−1 are attributed to the out-of-phase vibrations of the inner surface hydroxyls. The Raman spectra of the in-phase vibrations of the inner-surface hydroxyl-stretching region are described in terms of transverse and longitudinal optic splitting. The band at 3691 cm−1 is assigned to the transverse optic and the broad profile to the longitudinal optic mode. This splitting remained even at liquid nitrogen temperature. The transverse optic vibration may be curve resolved into two or three bands, which are attributed to different types of hydroxyl groups in the kaolinite.