958 resultados para Computer-driven foot
Resumo:
Optimisation in wireless sensor networks is necessary due to the resource constraints of individual devices, bandwidth limits of the communication channel, relatively high probably of sensor failure, and the requirement constraints of the deployed applications in potently highly volatile environments. This paper presents BioANS, a protocol designed to optimise a wireless sensor network for resource efficiency as well as to meet a requirement common to a whole class of WSN applications - namely that the sensor nodes are dynamically selected on some qualitative basis, for example the quality by which they can provide the required context information. The design of BioANS has been inspired by the communication mechanisms that have evolved in natural systems. The protocol tolerates randomness in its environment, including random message loss, and incorporates a non-deterministic ’delayed-bids’ mechanism. A simulation model is used to explore the protocol’s performance in a wide range of WSN configurations. Characteristics evaluated include tolerance to sensor node density and message loss, communication efficiency, and negotiation latency .
Resumo:
We used a numerical model to investigate if and to what extent cellular photoprotective capacity accounts for succession and vertical distribution of marine phytoplankton species/groups. A model describing xanthophyll photoprotective activity in phytoplankton has been implemented in the European Regional Sea Ecosystem Model and applied at the station L4 in the Western English Channel. Primary producers were subdivided into three phytoplankton functional types defined in terms of their capacity to acclimate to different light-specific environments: low light (LL-type), high light (HL-type) and variable light (VL-type) adapted species. The LL-type is assumed to have low cellular level of xanthophyll-cycling pigments (PX) relative to the modelled photosynthetically active pigments (chlorophyll and fucoxanthin (FUCO) = PSP). The HL-type has high PX content relative to PSP while VL-type presents an intermediate PX to PSP ratio. Furthermore, the VL-type is capable of reversibly converting FUCO to PX and synthesizing new PX under high-light stress. In order to reproduce phytoplankton community succession with each of the three groups being dominant in different periods of the year, we had also to assume reduced grazing pressure on HL-adapted species. Model simulations realistically reproduce the observed seasonal patterns of pigments and nutrients highlighting the reasonability of the underpinning assumptions. Our model suggests that pigment-mediated photophysiology plays a primary role in determining the evolution of marine phytoplankton communities in the winter-spring period corresponding to the shoaling of the mixed layer and the increase of light intensity. Grazing selectivity however contributes to the phytoplankton community composition in summer.
Resumo:
We set out aspects of a numerical algorithm used in solving the full-dimensionality time-dependent Schrodinger equation describing the electronic motion of the hydrogen molecular ion driven by an intense, linearly polarized laser pulse aligned along the molecular axis. This algorithm has been implemented within the fixed inter-nuclear separation approximation in a parallel computer code, a brief summary of which is given. Ionization rates are calculated and compared with results from other methods, notably the time-independent Floquet method. Our results compare very favourably with the precise predictions of the Floquet method, although there is some disagreement with other wavepacket calculations. Visualizations of the electron dynamics are also presented in which electron rescattering is observed.
Resumo:
We present a generic Service Level Agreement (SLA)-driven service provisioning architecture, which enables dynamic and flexible bandwidth reservation schemes on a per-user or a per-application basis. Various session level SLA negotiation schemes involving bandwidth allocation, service start time and service duration parameters are introduced and analysed. The results show that these negotiation schemes can be utilised for the benefits of both end user and network provide such as getting the highest individual SLA optimisation in terms of Quality of Service (QoS) and price. A prototype based on an industrial agent platform has also been built to demonstrate the negotiation scenario and this is presented and discussed.
Resumo:
In the last decade, data mining has emerged as one of the most dynamic and lively areas in information technology. Although many algorithms and techniques for data mining have been proposed, they either focus on domain independent techniques or on very specific domain problems. A general requirement in bridging the gap between academia and business is to cater to general domain-related issues surrounding real-life applications, such as constraints, organizational factors, domain expert knowledge, domain adaption, and operational knowledge. Unfortunately, these either have not been addressed, or have not been sufficiently addressed, in current data mining research and development.Domain-Driven Data Mining (D3M) aims to develop general principles, methodologies, and techniques for modeling and merging comprehensive domain-related factors and synthesized ubiquitous intelligence surrounding problem domains with the data mining process, and discovering knowledge to support business decision-making. This paper aims to report original, cutting-edge, and state-of-the-art progress in D3M. It covers theoretical and applied contributions aiming to: 1) propose next-generation data mining frameworks and processes for actionable knowledge discovery, 2) investigate effective (automated, human and machine-centered and/or human-machined-co-operated) principles and approaches for acquiring, representing, modelling, and engaging ubiquitous intelligence in real-world data mining, and 3) develop workable and operational systems balancing technical significance and applications concerns, and converting and delivering actionable knowledge into operational applications rules to seamlessly engage application processes and systems.
Resumo:
In this paper, a data driven orthogonal basis function approach is proposed for non-parametric FIR nonlinear system identification. The basis functions are not fixed a priori and match the structure of the unknown system automatically. This eliminates the problem of blindly choosing the basis functions without a priori structural information. Further, based on the proposed basis functions, approaches are proposed for model order determination and regressor selection along with their theoretical justifications. © 2008 IEEE.
Resumo:
Dynamic Voltage and Frequency Scaling (DVFS) exhibits fundamental limitations as a method to reduce energy consumption in computing systems. In the HPC domain, where performance is of highest priority and codes are heavily optimized to minimize idle time, DVFS has limited opportunity to achieve substantial energy savings. This paper explores if operating processors Near the transistor Threshold Volt- age (NTV) is a better alternative to DVFS for break- ing the power wall in HPC. NTV presents challenges, since it compromises both performance and reliability to reduce power consumption. We present a first of its kind study of a significance-driven execution paradigm that selectively uses NTV and algorithmic error tolerance to reduce energy consumption in performance- constrained HPC environments. Using an iterative algorithm as a use case, we present an adaptive execution scheme that switches between near-threshold execution on many cores and above-threshold execution on one core, as the computational significance of iterations in the algorithm evolves over time. Using this scheme on state-of-the-art hardware, we demonstrate energy savings ranging between 35% to 67%, while compromising neither correctness nor performance.
Resumo:
Composite Applications on top of SAPs implementation of SOA (Enterprise SOA) enable the extension of already existing business logic. In this paper we show, based on a case study, how Model-Driven Engineering concepts are applied in the development of such Composite Applications. Our Case Study extends a back-end business process which is required for the specific needs of a demo company selling wine. We use this to describe how the business centric models specifying the modified business behaviour of our case study can be utilized for business performance analysis where most of the actions are performed by humans. In particular, we apply a refined version of Model-Driven Performance Engineering that we proposed in our previous work and motivate which business domain specifics have to be taken into account for business performance analysis. We additionally motivate the need for performance related decision support for domain experts, who generally lack performance related skills. Such a support should offer visual guidance about what should be changed in the design and resource mapping to get improved results with respect to modification constraints and performance objectives, or objectives for time.
Resumo:
Social signals and interpretation of carried information is of high importance in Human Computer Interaction. Often used for affect recognition, the cues within these signals are displayed in various modalities. Fusion of multi-modal signals is a natural and interesting way to improve automatic classification of emotions transported in social signals. Throughout most present studies, uni-modal affect recognition as well as multi-modal fusion, decisions are forced for fixed annotation segments across all modalities. In this paper, we investigate the less prevalent approach of event driven fusion, which indirectly accumulates asynchronous events in all modalities for final predictions. We present a fusion approach, handling short-timed events in a vector space, which is of special interest for real-time applications. We compare results of segmentation based uni-modal classification and fusion schemes to the event driven fusion approach. The evaluation is carried out via detection of enjoyment-episodes within the audiovisual Belfast Story-Telling Corpus.
Resumo:
Cette thèse a pour but d’améliorer l’automatisation dans l’ingénierie dirigée par les modèles (MDE pour Model Driven Engineering). MDE est un paradigme qui promet de réduire la complexité du logiciel par l’utilisation intensive de modèles et des transformations automatiques entre modèles (TM). D’une façon simplifiée, dans la vision du MDE, les spécialistes utilisent plusieurs modèles pour représenter un logiciel, et ils produisent le code source en transformant automatiquement ces modèles. Conséquemment, l’automatisation est un facteur clé et un principe fondateur de MDE. En plus des TM, d’autres activités ont besoin d’automatisation, e.g. la définition des langages de modélisation et la migration de logiciels. Dans ce contexte, la contribution principale de cette thèse est de proposer une approche générale pour améliorer l’automatisation du MDE. Notre approche est basée sur la recherche méta-heuristique guidée par les exemples. Nous appliquons cette approche sur deux problèmes importants de MDE, (1) la transformation des modèles et (2) la définition précise de langages de modélisation. Pour le premier problème, nous distinguons entre la transformation dans le contexte de la migration et les transformations générales entre modèles. Dans le cas de la migration, nous proposons une méthode de regroupement logiciel (Software Clustering) basée sur une méta-heuristique guidée par des exemples de regroupement. De la même façon, pour les transformations générales, nous apprenons des transformations entre modèles en utilisant un algorithme de programmation génétique qui s’inspire des exemples des transformations passées. Pour la définition précise de langages de modélisation, nous proposons une méthode basée sur une recherche méta-heuristique, qui dérive des règles de bonne formation pour les méta-modèles, avec l’objectif de bien discriminer entre modèles valides et invalides. Les études empiriques que nous avons menées, montrent que les approches proposées obtiennent des bons résultats tant quantitatifs que qualitatifs. Ceux-ci nous permettent de conclure que l’amélioration de l’automatisation du MDE en utilisant des méthodes de recherche méta-heuristique et des exemples peut contribuer à l’adoption plus large de MDE dans l’industrie à là venir.
Resumo:
Genetic programming is known to provide good solutions for many problems like the evolution of network protocols and distributed algorithms. In such cases it is most likely a hardwired module of a design framework that assists the engineer to optimize specific aspects of the system to be developed. It provides its results in a fixed format through an internal interface. In this paper we show how the utility of genetic programming can be increased remarkably by isolating it as a component and integrating it into the model-driven software development process. Our genetic programming framework produces XMI-encoded UML models that can easily be loaded into widely available modeling tools which in turn posses code generation as well as additional analysis and test capabilities. We use the evolution of a distributed election algorithm as an example to illustrate how genetic programming can be combined with model-driven development. This example clearly illustrates the advantages of our approach – the generation of source code in different programming languages.