997 resultados para Combustion control


Relevância:

30.00% 30.00%

Publicador:

Resumo:

National Highway Traffic Safety Administration, Office of Research and Development, Washington, D.C.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Includes bibliographies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

"UC-11."

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper investigates the adequacy of current gas monitoring techniques to adequately detect spontaneous combustion in underground coalmines. Despite being in the 21st century spontaneous combustion continues to occur in underground coalmines sometimes being detected only at a very advanced stage. Control of the incident is often then very expensive and time consuming. The adequacy needs to be assessed not only from the point of view of the analysis technique be it tube bundle, gas chromatograph or real time sensor but also the number, location and sampling frequency of the monitoring locations. Recommendations are made to optimise monitoring processes and recognise limitations of current techniques.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Synchronous, time-resolved DRIFTS/MS/XAS cycling studies of the vapor-phase selective aerobic oxidation of crotyl alcohol over nanoparticulate Pd have revealed surface oxide as the desired catalytically active phase, with dynamic, reaction-induced Pd redox processes controlling selective versus combustion pathways.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the last years the need to develop more environmentally friendly and efficient cars as led to the development of several technologies to improve the performance of internal combustion engines, a large part of the innovations are focused in the auxiliary systems of the engine, including, the oil pump, this is an element of great importance in the dynamics of the engine as well a considerable energy consumer. Most solutions for oil pumps to this day are fixed displacement, for medium and high speeds, the pump flow rate is higher than the needs of the engine, this excess flow leads to the need for recirculation of the fluid which represents a waste of energy. Recently, technological advances in this area have led to the creation of variable displacement oil pumps, these have become a 'must have' due to the numerous advantages they bring, although the working principle of vane or piston pumps is relatively well known, the application of this technology for the automotive industry is new and brings new challenges. The focus of this dissertation is to develop a new concept of variable displacement system for automotive oil pumps. The main objective is to obtain a concept that is totally adaptable to existing solutions on the market (engines), both dimensionally as in performance specifications, having at the same time an innovative mechanical system for obtaining variable displacement. The developed design is a vane pump with variable displacement going in line with existing commercial solutions, however, the variation of the eccentricity commonly used to provide an variable displacement delivery is not used, the variable displacement is achieved without varying the eccentricity of the system but with a variation of the length of the pumping chamber. The principle of operation of the pump is different to existing solutions while maintaining the ability to integrate standard parts such as control valves and mechanical safety valves, the pump is compatible with commercial solutions in terms of interfaces for connection between engine systems and pump. A concept prototype of the product was obtained in order to better evaluate the validity of the concept. The developed concept represents an innovation in oil pumps design, being unique in its mechanical system for variable displacement delivery.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

© IMechE 2014. Controlled auto-ignition, also known as homogeneous charge compression ignition, has been the subject of extensive research because of their ability to provide simultaneous reductions in fuel consumption and NOx emissions from a gasoline engine. However, due to its limited operation range, switching between controlled auto-ignition and spark ignition combustion is needed to cover the complete operating range of a gasoline engine for passenger car applications. Previous research has shown that the spark ignition -controlled auto-ignition hybrid combustion (SCHC) has the potential to control the ignition timing and heat release process during the mode transition operations. However, it was found that the SCHC is often characterized with large cycle-to-cycle variations. The cyclic variations in the in-cylinder pressure are particularly noticeable in terms of both their peak values and timings while the coefficient of variation in the indicated mean effective pressure is much less. In this work, the cyclic variations in SCHC operations were analyzed by means of in-cylinder pressure and heat release analysis in a single-cylinder gasoline engine equipped with Variable Valve Actuation (VVA) systems. First, characteristics of the in-cylinder pressure traces during the spark ignition-controlled auto-ignition hybrid combustion operation are presented and their heat release processes analyzed. In order to clarify the contribution to heat release and cyclic variation in SCHC, a new method is introduced to identify the occurrence of auto-ignition combustion and its subsequent heat release process. Based on the new method developed, the characteristics of cyclic variations in the maximum rate of pressure rise and different stages of heat release process have been analyzed and discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Experiments were conducted at the GALCIT supersonic shear-layer facility to investigate aspects of reacting transverse jets in supersonic crossflow using chemiluminescence and schlieren image-correlation velocimetry. In particular, experiments were designed to examine mixing-delay length dependencies on jet-fluid molar mass, jet diameter, and jet inclination.

The experimental results show that mixing-delay length depends on jet Reynolds number, when appropriately normalized, up to a jet Reynolds number of 500,000. Jet inclination increases the mixing-delay length, but causes less disturbance to the crossflow when compared to normal jet injection. This can be explained, in part, in terms of a control-volume analysis that relates jet inclination to flow conditions downstream of injection.

In the second part of this thesis, a combustion-modeling framework is proposed and developed that is tailored to large-eddy simulations of turbulent combustion in high-speed flows. Scaling arguments place supersonic hydrocarbon combustion in a regime of autoignition-dominated distributed reaction zones (DRZ). The proposed evolution-variable manifold (EVM) framework incorporates an ignition-delay data-driven induction model with a post-ignition manifold that uses a Lagrangian convected 'balloon' reactor model for chemistry tabulation. A large-eddy simulation incorporating the EVM framework captures several important reacting-flow features of a transverse hydrogen jet in heated-air crossflow experiment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Determination of combustion metrics for a diesel engine has the potential of providing feedback for closed-loop combustion phasing control to meet current and upcoming emission and fuel consumption regulations. This thesis focused on the estimation of combustion metrics including start of combustion (SOC), crank angle location of 50% cumulative heat release (CA50), peak pressure crank angle location (PPCL), and peak pressure amplitude (PPA), peak apparent heat release rate crank angle location (PACL), mean absolute pressure error (MAPE), and peak apparent heat release rate amplitude (PAA). In-cylinder pressure has been used in the laboratory as the primary mechanism for characterization of combustion rates and more recently in-cylinder pressure has been used in series production vehicles for feedback control. However, the intrusive measurement with the in-cylinder pressure sensor is expensive and requires special mounting process and engine structure modification. As an alternative method, this work investigated block mounted accelerometers to estimate combustion metrics in a 9L I6 diesel engine. So the transfer path between the accelerometer signal and the in-cylinder pressure signal needs to be modeled. Depending on the transfer path, the in-cylinder pressure signal and the combustion metrics can be accurately estimated - recovered from accelerometer signals. The method and applicability for determining the transfer path is critical in utilizing an accelerometer(s) for feedback. Single-input single-output (SISO) frequency response function (FRF) is the most common transfer path model; however, it is shown here to have low robustness for varying engine operating conditions. This thesis examines mechanisms to improve the robustness of FRF for combustion metrics estimation. First, an adaptation process based on the particle swarm optimization algorithm was developed and added to the single-input single-output model. Second, a multiple-input single-output (MISO) FRF model coupled with principal component analysis and an offset compensation process was investigated and applied. Improvement of the FRF robustness was achieved based on these two approaches. Furthermore a neural network as a nonlinear model of the transfer path between the accelerometer signal and the apparent heat release rate was also investigated. Transfer path between the acoustical emissions and the in-cylinder pressure signal was also investigated in this dissertation on a high pressure common rail (HPCR) 1.9L TDI diesel engine. The acoustical emissions are an important factor in the powertrain development process. In this part of the research a transfer path was developed between the two and then used to predict the engine noise level with the measured in-cylinder pressure as the input. Three methods for transfer path modeling were applied and the method based on the cepstral smoothing technique led to the most accurate results with averaged estimation errors of 2 dBA and a root mean square error of 1.5dBA. Finally, a linear model for engine noise level estimation was proposed with the in-cylinder pressure signal and the engine speed as components.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The one-dimensional propagation of a combustion wave through a premixed solid fuel for two-stage kinetics is studied. We re-examine the analysis of a single reaction travelling-wave and extend it to the case of two-stage reactions. We derive an expression for the travelling wave speed in the limit of large activation energy for both reactions. The analysis shows that when both reactions are exothermic, the wave structure is similar to the single reaction case. However, when the second reaction is endothermic, the wave structure can be significantly different from single reaction case. In particular, as might be expected, a travelling wave does not necessarily exist in this case. We establish conditions in the limiting large activation energy limit for the non-existence, and for monotonicity of the temperature profile in the travelling wave.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An unstructured mesh �nite volume discretisation method for simulating di�usion in anisotropic media in two-dimensional space is discussed. This technique is considered as an extension of the fully implicit hybrid control-volume �nite-element method and it retains the local continuity of the ux at the control volume faces. A least squares function recon- struction technique together with a new ux decomposition strategy is used to obtain an accurate ux approximation at the control volume face, ensuring that the overall accuracy of the spatial discretisation maintains second order. This paper highlights that the new technique coincides with the traditional shape function technique when the correction term is neglected and that it signi�cantly increases the accuracy of the previous linear scheme on coarse meshes when applied to media that exhibit very strong to extreme anisotropy ratios. It is concluded that the method can be used on both regular and irregular meshes, and appears independent of the mesh quality.