931 resultados para Coefficient of concordance
Resumo:
Las tendencias actuales apuntan al desarrollo de nuevos materiales económicos y ecológicos con óptimas propiedades mecánicas, acústicas y térmicas. En la caracterización acústica del material es habitual medir su coeficiente de absorción sonora. Las dos técnicas usuales de medida de este parámetro son en cámara reverberante y en tubo de Kundt. No obstante, existen técnicas de medida “in situ” del coeficiente de absorción que permiten una comprobación del comportamiento real en la forma definitiva de colocación del material. En este trabajo se presenta un estudio comparativo del coeficiente de absorción sonora medido en un material usando distintas técnicas de medida.
Resumo:
The refractive index and extinction coefficient of chemical vapour deposition grown graphene are determined by ellipsometry analysis. Graphene films were grown on copper substrates and transferred as both monolayers and bilayers onto SiO2/Si substrates by using standard manufacturing procedures. The chemical nature and thickness of residual debris formed after the transfer process were elucidated using photoelectron spectroscopy. The real layered structure so deduced has been used instead of the nominal one as the input in the ellipsometry analysis of monolayer and bilayer graphene, transferred onto both native and thermal silicon oxide. The effect of these contamination layers on the optical properties of the stacked structure is noticeable both in the visible and the ultraviolet spectral regions, thus masking the graphene optical response. Finally, the use of heat treatment under a nitrogen atmosphere of the graphene-based stacked structures, as a method to reduce the water content of the sample, and its effect on the optical response of both graphene and the residual debris layer are presented. The Lorentz-Drude model proposed for the optical response of graphene fits fairly well the experimental ellipsometric data for all the analysed graphene-based stacked structures.
Resumo:
Mode of access: Internet.
Resumo:
"U.S. Atomic Energy Commission Contract AT(29-1)-1106."
Resumo:
Mode of access: Internet.
Resumo:
We measure the radial profile of the photoelastic coefficient C(r) in single-mode polymer optical fibers (POFs), and we determine the evolution of C(r) after annealing the fibers at temperatures from 40°C to 80°C. We demonstrate that C(r) in the fibers drawn from a preform without specific thermal pre-treatment changes and converges to values between 1.2 and 1.6×10-12 Pa-1 following annealing at 80°C. The annealed fibers display a smoothened radial profile of C(r) and a lowered residual birefringence. In contrast, the mean value of C(r) of the fiber drawn from a preform that has been pre-annealed remains constant after our annealing process and is significantly higher, i.e., 4×10-12 Pa-1. The annealing process decreases the residual birefringence to a lower extent as well. These measurements indicate the impact of annealing on the thermal stability of the photoelastic coefficient of POFs, which is an essential characteristic in view of developing POF-based thermomechanical sensors.
Resumo:
[EN] We carry out quasi-classical trajectory caculations for theC + CH+ → C2+ + H reaction on an ad hoc computed high-level ab initio potential energy surface. Thermal rate coefficients at the temperatures of relevance in cold interstellar clouds are derived and compared with the assumed, temperature-independent estimates publicly available in kinetic databases KIDA and UDfA. For a temperature of 10 K the database value overestimates by a factor of two the one obtained by us (thus improperly enhancing the destruction route of CH+ in astrochemical kinetic models) which is seen to double in the temperature range 5–300 K with a sharp increase in the first 50 K. The computed values are fitted via the popular Arrhenius–Kooij formula and best-fitting parameters α = 1:32 X 10-9 cm3s-1, β = 0:10 and γ = 2:19 K to be included in the online mentioned databases are provided. Further investigation shows that the temperature dependence of the thermal rate coefficient better conforms to the recently proposed so-called ‘deformed Arrhenius’ law by Aquilanti and Mundim.
Resumo:
Partial funding for open access provided by the UMD Libraries' Open Access Publishing Fund.