948 resultados para Chaotic attractors


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Host-parasitoid models including integrated pest management (IPM) interventions with impulsive effects at both fixed and unfixed times were analyzed with regard to host-eradication, host-parasitoid persistence and host-outbreak solutions. The host-eradication periodic solution with fixed moments is globally stable if the host's intrinsic growth rate is less than the summation of the mean host-killing rate and the mean parasitization rate during the impulsive period. Solutions for all three categories can coexist, with switch-like transitions among their attractors showing that varying dosages and frequencies of insecticide applications and the numbers of parasitoids released are crucial. Periodic solutions also exist for models with unfixed moments for which the maximum amplitude of the host is less than the economic threshold. The dosages and frequencies of IPM interventions for these solutions are much reduced in comparison with the pest-eradication periodic solution. Our results, which are robust to inclusion of stochastic effects and with a wide range of parameter values, confirm that IPM is more effective than any single control tactic.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We show that a dense spectrum of chaotic multiply excited eigenstates can play a major role in collision processes involving many-electron multicharged ions. A statistical theory based on chaotic properties of the eigenstates enables one to obtain relevant energy-averaged cross sections in terms of sums over single-electron orbitals. Our calculation of low-energy electron recombination of Au25+ shows that the resonant process is 200 times more intense than direct radiative recombination, which explains the recent experimental results of Hoffknecht [J. Phys. B 31, 2415 (1998)].

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A theory of strongly interacting Fermi systems of a few particles is developed. At high excit at ion energies (a few times the single-parti cle level spacing) these systems are characterized by an extreme degree of complexity due to strong mixing of the shell-model-based many-part icle basis st at es by the residual two- body interaction. This regime can be described as many-body quantum chaos. Practically, it occurs when the excitation energy of the system is greater than a few single-particle level spacings near the Fermi energy. Physical examples of such systems are compound nuclei, heavy open shell atoms (e.g. rare earths) and multicharged ions, molecules, clusters and quantum dots in solids. The main quantity of the theory is the strength function which describes spreading of the eigenstates over many-part icle basis states (determinants) constructed using the shell-model orbital basis. A nonlinear equation for the strength function is derived, which enables one to describe the eigenstates without diagonalization of the Hamiltonian matrix. We show how to use this approach to calculate mean orbital occupation numbers and matrix elements between chaotic eigenstates and introduce typically statistical variable s such as t emperature in an isolated microscopic Fermi system of a few particles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We construct an infinite dimensional non-unital Banach algebra $A$ and $a\in A$ such that the sets $\{za^n:z\in\C,\ n\in\N\}$ and $\{({\bf 1}+a)^na:n\in\N\}$ are both dense in $A$, where $\bf 1$ is the unity in the unitalization $A^{\#}=A\oplus \spann\{{\bf 1}\}$ of $A$. As a byproduct, we get a hypercyclic operator $T$ on a Banach space such that $T\oplus T$ is non-cyclic and $\sigma(T)=\{1\}$.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the peculiar dynamical features of a fractional derivative of complex-order network. The network is composed of two unidirectional rings of cells, coupled through a "buffer" cell. The network has a Z3 × Z5 cyclic symmetry group. The complex derivative Dα±jβ, with α, β ∈ R+ is a generalization of the concept of integer order derivative, where α = 1, β = 0. Each cell is modeled by the Chen oscillator. Numerical simulations of the coupled cell system associated with the network expose patterns such as equilibria, periodic orbits, relaxation oscillations, quasiperiodic motion, and chaos, in one or in two rings of cells. In addition, fixing β = 0.8, we perceive differences in the qualitative behavior of the system, as the parameter c ∈ [13, 24] of the Chen oscillator and/or the real part of the fractional derivative, α ∈ {0.5, 0.6, 0.7, 0.8, 0.9, 1.0}, are varied. Some patterns produced by the coupled system are constrained by the network architecture, but other features are only understood in the light of the internal dynamics of each cell, in this case, the Chen oscillator. What is more important, architecture and/or internal dynamics?

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this thesis we have presented some aspects of the nonlinear dynamics of Nd:YAG lasers including synchronization, Hopf bifurcation, chaos control and delay induced multistability.We have chosen diode pumped Nd:YAG laser with intracavity KTP crystal operating with two mode and three mode output as our model system.Different types of orientation for the laser cavity modes were considered to carry out the studies. For laser operating with two mode output we have chosen the modes as having parallel polarization and perpendicular polarization. For laser having three mode output, we have chosen them as two modes polarized parallel to each other while the third mode polarized orthogonal to them.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

FPS is a more general form of synchronization. Hyperchaotic systems possessing more than one positive Lypaunov exponent exhibit highly complex behaviour and are more suitable for some applications like secure communications. In this thesis we report studies of FPS and MFPS of a few chaotic and hyperchaotic systems. When all the parameters of the system are known we show that active nonlinear control method can be efectively used to obtain FPS. Adaptive nonlinear control and OPCL control method are employed for obtaining FPS and MFPS when some or all parameters of the system are uncertain. A secure communication scheme based on MFPS is also proposed in theory. All our theoretical calculations are verified by numerical simulations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chaotic synchronization of two directly modulated semiconductor lasers with negative delayed optoelectronic feedback is investigated and this scheme is found to be useful for e±cient bidirectional communication between the lasers. A symmetric bidirec- tional coupling is identified as a suitable method for isochronal synchronization of such lasers. The optimum values of coupling and feedback strength that can provide maxi- mum quality of synchronization are identified. This method is successfully employed for encoding/decoding both analog and digital messages. The importance of a symmetric coupling is demonstrated by studying the variation of decoding efficiency with respect to asymmetric coupling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Isochronal synchronisation between the elements of an array of three mutually coupled directly modulated semiconductor lasers is utilized for the purpose of simultaneous bidirectional secure communication. Chaotic synchronisation is achieved by adding the coupling signal to the self feedback signal provided to each element of the array. A symmetric coupling is effective in inducing synchronisation between the elements of the array. This coupling scheme provides a direct link between every pair of elements thus making the method suitable for simultaneous bidirectional communication between them. Both analog and digital messages are successfully encrypted and decrypted simultaneously by each element of the array.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The chaotic dynamics of directly modulated semiconductor lasers with delayed optoelectronic feedback is studied numerically. The effects of positive and negative delayed optoelectronic feedback in producing chaotic outputs from such lasers with nonlinear gain reduction in its optimum value range is investigated using bifurcation diagrams. The results are confirmed by calculating the Lyapunov exponents. A negative delayed optoelectronic feedback configuration is found to be more effective in inducing chaotic dynamics to such systems with nonlinear gain reduction factor in the practical value range.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this Letter we numerically investigate the dynamics of a system of two coupled chaotic multimode Nd:YAG lasers with two mode and three mode outputs. Unidirectional and bidirectional coupling schemes are adopted; intensity time series plots, phase space plots and synchronization plots are used for studying the dynamics. Quality of synchronization is measured using correlation index plots. It is found that for laser with two mode output bidirectional direct coupling scheme is found to be effective in achieving complete synchronization, control of chaos and amplification in output intensity. For laser with three mode output, bidirectional difference coupling scheme gives much better chaotic synchronization as compared to unidirectional difference coupling but at the cost of higher coupling strength. We also conclude that the coupling scheme and system properties play an important role in determining the type of synchronization exhibited by the system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of coupling two chaotic Nd:YAG lasers with intracavity KTP crystal for frequency doubling is numerically studied for the case of the laser operating in three longitudinal modes. It is seen that the system goes from chaotic to periodic and then to steady state as the coupling constant is increased. The intensity time series and phase diagrams are drawn and the Lyapunov characteristic exponent is calculated to characterize the chaotic and periodic regions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present the analytical investigations on a logistic map with a discontinuity at the centre. An explanation for the bifurcation phenomenon in discontinuous systems is presented. We establish that whenever the elements of an n-cycle (n > 1) approach the discontinuities of the nth iterate of the map, a bifurcation other than the usual period-doubling one takes place. The periods of the cycles decrease in an arithmetic progression, as the control parameter is varied. The system also shows the presence of multiple attractors. Our results are verified by numerical experiments as well.