927 resultados para Cerebral circulation
Resumo:
PURPOSE To develop and test decision tree (DT) models to classify physical activity (PA) intensity from accelerometer output and Gross Motor Function Classification System (GMFCS) classification level in ambulatory youth with cerebral palsy (CP); and 2) compare the classification accuracy of the new DT models to that achieved by previously published cut-points for youth with CP. METHODS Youth with CP (GMFCS Levels I - III) (N=51) completed seven activity trials with increasing PA intensity while wearing a portable metabolic system and ActiGraph GT3X accelerometers. DT models were used to identify vertical axis (VA) and vector magnitude (VM) count thresholds corresponding to sedentary (SED) (<1.5 METs), light PA (LPA) (>/=1.5 and <3 METs) and moderate-to-vigorous PA (MVPA) (>/=3 METs). Models were trained and cross-validated using the 'rpart' and 'caret' packages within R. RESULTS For the VA (VA_DT) and VM decision trees (VM_DT), a single threshold differentiated LPA from SED, while the threshold for differentiating MVPA from LPA decreased as the level of impairment increased. The average cross-validation accuracy for the VC_DT was 81.1%, 76.7%, and 82.9% for GMFCS levels I, II, and III, respectively. The corresponding cross-validation accuracy for the VM_DT was 80.5%, 75.6%, and 84.2%, respectively. Within each GMFCS level, the decision tree models achieved better PA intensity recognition than previously published cut-points. The accuracy differential was greatest among GMFCS level III participants, in whom the previously published cut-points misclassified 40% of the MVPA activity trials. CONCLUSION GMFCS-specific cut-points provide more accurate assessments of MVPA levels in youth with CP across the full spectrum of ambulatory ability.
Resumo:
BACKGROUND Physical therapy for youth with cerebral palsy (CP) who are ambulatory includes interventions to increase functional mobility and participation in physical activity (PA). Thus, reliable and valid measures are needed to document PA in youth with CP. OBJECTIVE The purpose of this study was to evaluate the inter-instrument reliability and concurrent validity of 3 accelerometer-based motion sensors with indirect calorimetry as the criterion for measuring PA intensity in youth with CP. METHODS Fifty-seven youth with CP (mean age=12.5 years, SD=3.3; 51% female; 49.1% with spastic hemiplegia) participated. Inclusion criteria were: aged 6 to 20 years, ambulatory, Gross Motor Function Classification System (GMFCS) levels I through III, able to follow directions, and able to complete the full PA protocol. Protocol activities included standardized activity trials with increasing PA intensity (resting, writing, household chores, active video games, and walking at 3 self-selected speeds), as measured by weight-relative oxygen uptake (in mL/kg/min). During each trial, participants wore bilateral accelerometers on the upper arms, waist/hip, and ankle and a portable indirect calorimeter. Intraclass coefficient correlations (ICCs) were calculated to evaluate inter-instrument reliability (left-to-right accelerometer placement). Spearman correlations were used to examine concurrent validity between accelerometer output (activity and step counts) and indirect calorimetry. Friedman analyses of variance with post hoc pair-wise analyses were conducted to examine the validity of accelerometers to discriminate PA intensity across activity trials. RESULTS All accelerometers exhibited excellent inter-instrument reliability (ICC=.94-.99) and good concurrent validity (rho=.70-.85). All accelerometers discriminated PA intensity across most activity trials. LIMITATIONS This PA protocol consisted of controlled activity trials. CONCLUSIONS Accelerometers provide valid and reliable measures of PA intensity among youth with CP.
Resumo:
Aim This study evaluated the validity of the OMNI Walk/Run Rating of Perceived Exertion (OMNI-RPE) scores with heart rate and oxygen consumption (VO2) for children and adolescents with cerebral palsy (CP). Method Children and adolescents with CP, aged 6 to 18 years and Gross Motor Function Classification System (GMFCS) levels I to III completed a physical activity protocol with seven trials ranging in intensity from sedentary to moderate-to-vigorous. VO2 and heart rate were recorded during the physical activity trials using a portable indirect calorimeter and heart rate monitor. Participants reported OMNI-RPE scores for each trial. Concurrent validity was assessed by calculating the average within-subject correlation between OMNI-RPE ratings and the two physiological indices. Results For the correlational analyses, 48 participants (22 males, 26 females; age 12y 6mo, SD 3y 4mo) had valid bivariate data for VO2 and OMNI-RPE, while 40 participants (21 males, 19 females; age 12y 5mo, SD 2y 9mo) had valid bivariate data for heart rate and OMNI-RPE. VO2 (r=0.80; 95% CI 0.66–0.88) and heart rate (r=0.83; 95% CI 0.70–0.91) were moderately to highly correlated to OMNI-RPE scores. No difference was found for the correlation of physiological data and OMNI-RPE scores across the three GMFCS levels. The OMNI-RPE scores increased significantly in a dose-response manner (F6,258=116.1, p<0.001) as exercise intensity increased from sedentary to moderate-to-vigorous. Interpretation OMNI-RPE is a clinically feasible option to monitor exercise intensity in ambulatory children and adolescents with CP.
Resumo:
5 Coin set. 1 Agora; 5 Agorot; 10 Agorot; 1/2 New Sheqel; 1 New Sheqel. All of the coins have Hanukkiyot on the obverse side.
Resumo:
5 coin set: 5 Agorot; 10 Agorot; 1/2 New Sheqel; 1 New Sheqel; 5 New Sheqalim. All of the coins have on the obverse side Hanukkiyot and word Hanukka.
Resumo:
A zonally averaged version of the Goddard Laboratory for Atmospheric Sciences (GLAS) climate model is used to study the sensitivity of the northern hemisphere (NH) summer mean meridional circulation to changes in the large scale eddy forcing. A standard solution is obtained by prescribing the latent heating field and climatological horizontal transports of heat and momentum by the eddies. The radiative heating and surface fluxes are calculated by model parameterizations. This standard solution is compared with the results of several sensitivity studies. When the eddy forcing is reduced to 0.5 times or increased to 1.5 times the climatological values, the strength of the Ferrel cells decrease or increase proportionally. It is also seen that such changes in the eddy forcing can influence the strength of theNH Hadley cell significantly. Possible impact of such changes in the large scale eddy forcing on the monsoon circulation via changes in the Hadley circulation is discussed. Sensitivity experiments including only one component of eddy forcing at a time show that the eddy momentum fluxes seem to be more important in maintaining the Ferrel cells than the eddy heat fluxes. In the absence of the eddy heat fluxes, the observed eddy momentum fluxes alone produce subtropical westerly jets which are weaker than those in the standard solution. On the other hand, the observed eddy heat fluxes alone produce subtropical westerly jets which are stronger than those in the standard solution.
Resumo:
The matrix of blood is a liquid plasma that transports molecules and blood cells within vessels lined by endothelial cells. High-mobility group B1 (HMGB1) is a protein expressed in blood cells. Under normal circumstances, HMGB1 is virtually absent from plasma, but during inflammation or trauma its level in plasma is increased. In resting and quiescent cells, HMGB1 is usually localized in the intracellular compartment, with the exception of motile cells that express HMGB1 on their outer surface to mediate cell migration. During cell transformation or immune cell activation HMGB1 can be actively secreted outside of the cell. Further, when a cell is damaged, HMGB1 can passively leak into extracellular environment. Extracellular HMGB1 can then participate in regulation of the immune response and under some conditions it can mediate lethality in systemic inflammatory response. The aim of this study was to evaluate the expression and functions of HMGB1 in cells of the vascular system and to investigate the prognostic value of circulating HMGB1 in severe sepsis and septic shock. HMGB1 was detected in platelets, leukocytes, and endothelial cells. HMGB1 was released from platelets and leukocytes, and it was found to mediate their adhesive and migratory functions. During severe infections the plasma levels of HMGB1 were elevated; however, no direct correlation with lethality was found. Further, the analysis of proinflammatory mechanisms suggested that HMGB1 forms complexes with other molecules to activate the immune system. In conclusion, HMGB1 is expressed in the cells of the vascular system, and it participates in inflammatory mechanisms by activating platelets and leukocytes and by mediating monocyte migration.
Resumo:
The rupture of a cerebral artery aneurysm causes a devastating subarachnoid hemorrhage (SAH), with a mortality of almost 50% during the first month. Each year, 8-11/100 000 people suffer from aneurysmal SAH in Western countries, but the number is twice as high in Finland and Japan. The disease is most common among those of working age, the mean age at rupture being 50-55 years. Unruptured cerebral aneurysms are found in 2-6% of the population, but knowledge about the true risk of rupture is limited. The vast majority of aneurysms should be considered rupture-prone, and treatment for these patients is warranted. Both unruptured and ruptured aneurysms can be treated by either microsurgical clipping or endovascular embolization. In a standard microsurgical procedure, the neck of the aneurysm is closed by a metal clip, sealing off the aneurysm from the circulation. Endovascular embolization is performed by packing the aneurysm from the inside of the vessel lumen with detachable platinum coils. Coiling is associated with slightly lower morbidity and mortality than microsurgery, but the long-term results of microsurgically treated aneurysms are better. Endovascular treatment methods are constantly being developed further in order to achieve better long-term results. New coils and novel embolic agents need to be tested in a variety of animal models before they can be used in humans. In this study, we developed an experimental rat aneurysm model and showed its suitability for testing endovascular devices. We optimized noninvasive MRI sequences at 4.7 Tesla for follow-up of coiled experimental aneurysms and for volumetric measurement of aneurysm neck remnants. We used this model to compare platinum coils with polyglycolic-polylactic acid (PGLA) -coated coils, and showed the benefits of the latter in this model. The experimental aneurysm model and the imaging methods also gave insight into the mechanisms involved in aneurysm formation, and the model can be used in the development of novel imaging techniques. This model is affordable, easily reproducible, reliable, and suitable for MRI follow-up. It is also suitable for endovascular treatment, and it evades spontaneous occlusion.
Resumo:
Visual information processing in brain proceeds in both serial and parallel fashion throughout various functionally distinct hierarchically organised cortical areas. Feedforward signals from retina and hierarchically lower cortical levels are the major activators of visual neurons, but top-down and feedback signals from higher level cortical areas have a modulating effect on neural processing. My work concentrates on visual encoding in hierarchically low level cortical visual areas in human brain and examines neural processing especially in cortical representation of visual field periphery. I use magnetoencephalography and functional magnetic resonance imaging to measure neuromagnetic and hemodynamic responses during visual stimulation and oculomotor and cognitive tasks from healthy volunteers. My thesis comprises six publications. Visual cortex forms a great challenge for modeling of neuromagnetic sources. My work shows that a priori information of source locations are needed for modeling of neuromagnetic sources in visual cortex. In addition, my work examines other potential confounding factors in vision studies such as light scatter inside the eye which may result in erroneous responses in cortex outside the representation of stimulated region, and eye movements and attention. I mapped cortical representations of peripheral visual field and identified a putative human homologue of functional area V6 of the macaque in the posterior bank of parieto-occipital sulcus. My work shows that human V6 activates during eye-movements and that it responds to visual motion at short latencies. These findings suggest that human V6, like its monkey homologue, is related to fast processing of visual stimuli and visually guided movements. I demonstrate that peripheral vision is functionally related to eye-movements and connected to rapid stream of functional areas that process visual motion. In addition, my work shows two different forms of top-down modulation of neural processing in the hierachically lowest cortical levels; one that is related to dorsal stream activation and may reflect motor processing or resetting signals that prepare visual cortex for change in the environment and another local signal enhancement at the attended region that reflects local feed-back signal and may perceptionally increase the stimulus saliency.
Resumo:
Backround and Purpose The often fatal (in 50-35%) subarachnoid hemorrhage (SAH) caused by saccular cerebral artery aneurysm (SCAA) rupture affects mainly the working aged population. The incidence of SAH is 10-11 / 100 000 in Western countries and twice as high in Finland and Japan. The estimated prevalence of SCAAs is around 2%. Many of those never rupture. Currently there are, however, no diagnostic methods to identify rupture-prone SCAAs from quiescent, (dormant) ones. Finding diagnostic markers for rupture-prone SCAAs is of primary importance since a SCAA rupture has such a sinister outcome, and all current treatment modalities are associated with morbidity and mortality. Also the therapies that prevent SCAA rupture need to be developed to as minimally invasive as possible. Although the clinical risk factors for SCAA rupture have been extensively studied and documented in large patient series, the cellular and molecular mechanisms how these risk factors lead to SCAA wall rupture remain incompletely known. Elucidation of the molecular and cellular pathobiology of the SCAA wall is needed in order to develop i) novel diagnostic tools that could identify rupture-prone SCAAs or patients at risk of SAH, and to ii) develop novel biological therapies that prevent SCAA wall rupture. Materials and Methods In this study, histological samples from unruptured and ruptured SCAAs and plasma samples from SCAA carriers were compared in order to identify structural changes, cell populations, growth factor receptors, or other molecular markers that would associate with SCAA wall rupture. In addition, experimental saccular aneurysm models and experimental models of mechanical vascular injury were used to study the cellular mechanisms of scar formation in the arterial wall, and the adaptation of the arterial wall to increased mechanical stress. Results and Interpretation Inflammation and degeneration of the SCAA wall, namely loss of mural cells and degradation of the wall matrix, were found to associate with rupture. Unruptured SCAA walls had structural resemblance with pads of myointimal hyperplasia or so called neointima that characterizes early atherosclerotic lesions, and is the repair and adaptation mechanism of the arterial wall after injury or increased mechanical stress. As in pads of myointimal hyperplasia elsewhere in the vasculature, oxidated LDL was found in the SCAA walls. Immunity against OxLDL was demonstrated in SAH patients with detection of circulating anti-oxidized LDL antibodies, which were significantly associated with the risk of rupture in patients with solitary SCAAs. Growth factor receptors associated with arterial wall remodeling and angiogenesis were more expressed in ruptured SCAA walls. In experimental saccular aneurysm models, capillary growth, arterial wall remodeling and neointima formation were found. The neointimal cells were shown to originate from the experimental aneurysm wall with minor contribution from the adjacent artery, and a negligible contribution of bone marrow-derived neointimal cells. Since loss of mural cells characterizes ruptured human SCAAs and likely impairs the adaptation and repair mechanism of ruptured or rupture-prone SCAAs, we investigated also the hypothesis that bone marrow-derived or circulating neointimal precursor cells could be used to enhance neointima formation and compensate the impaired repair capacity in ruptured SCAA walls. However, significant contribution of bone marrow cells or circulating mononuclear cells to neointima formation was not found.
Resumo:
Objective: Distal anterior cerebral artery (DACA) aneurysms represent about 6% of all intracranial aneurysms. So far, only small series on treatment of these aneurysms have been published. Our aim is to evaluate the anatomic features, microneurosurgical techniques, treatment results, and long-term outcome in patients treated for DACA aneurysms. Patients and methods: We analyzed the clinical and radiological data on 517 consecutive patients diagnosed with DACA aneurysm at two neurosurgical centers serving solely the Southern (Helsinki) and Eastern (Kuopio) Finland in 1936–2007, and used a defined subgroup of the whole study population in each part of the study. Detailed anatomic analysis was performed in 101 consecutive patients from 1998 to 2007. Treatment results were analyzed in 427 patients treated between 1980 to 2005, the era of CT imaging and microneurosurgery. Long-term treatment outcome of ruptured DACA aneurysm(s) was evaluated in 280 patients with a median follow-up of 10 years; no patients were lost to follow-up. Results: DACA aneurysms, found most often (83%) at the A3 segment of the anterior cerebral artery (ACA), were smaller (median 6 mm vs. 8 mm), more frequently associated with multiple aneurysms (35% vs. 18%), and presented more often with intracerebral hematomas (ICHs) (53% vs. 26%) than ruptured aneurysms in general. They were associated with anomalies of the ACA in 23% of the patients. Microsurgical treatment showed similar complication rates (treatment morbidity 15%, treatment mortality 0.4%) as for other ruptured aneurysms. At one year after subarachnoid hemorrhage (SAH), DACA aneurysms had equally favorable outcome (GOS≥4) as other ruptured aneurysms (74% vs. 69%) but their mortality was lower (13% vs. 24%). Factors predicting unfavorable outcome for ruptured DACA aneurysms were advanced age, Hunt&Hess≥3, rebleeding before treatment, ICH, intraventricular hemorrhage, and severe preoperative hydrocephalus. The cumulative relative survival ratio showed 16% excess mortality in patients with ruptured DACA aneurysm during the first three years after SAH compared to the matched general population. From the fourth year onwards, there was no excess mortality during the follow-up. There were four episodes of recurrent SAH, only one due to treated DACA aneurysm, with a 10-year cumulative risk of 1.4%. Conclusions: The special neurovascular features and frequent association with anterior cerebral artery anomalies must be taken into account when planning occlusive treatment of DACA aneurysms. Clipping of DACA aneurysms provides a long-lasting result, with very small rates of rebleeding. After surviving three years from rupture of DACA aneurysm, the long-term survival of these patients becomes similar to that of the matched general population.
Resumo:
An Ocean General Circulation Model of the Indian Ocean with high horizontal (0.25 degrees x 0.25 degrees) and vertical (40 levels) resolutions is used to study the dynamics and thermodynamics of the Arabian Sea mini warm pool (ASMWP), the warmest region in the northern Indian Ocean during January-April. The model simulates the seasonal cycle of temperature, salinity and currents as well as the winter time temperature inversions in the southeastern Arabian Sea (SEAS) quite realistically with climatological forcing. An experiment which maintained uniform salinity of 35 psu over the entire model domain reproduces the ASMWP similar to the control run with realistic salinity and this is contrary to the existing theories that stratification caused by the intrusion of low-salinity water from the Bay of Bengal into the SEAS is crucial for the formation of ASMWP. The contribution from temperature inversions to the warming of the SEAS is found to be negligible. Experiments with modified atmospheric forcing over the SEAS show that the low latent heat loss over the SEAS compared to the surroundings, resulting from the low winds due to the orographic effect of Western Ghats, plays an important role in setting up the sea surface temperature (SST) distribution over the SEAS during November March. During March-May, the SEAS responds quickly to the air-sea fluxes and the peak SST during April-May is independent of the SST evolution during previous months. The SEAS behaves as a low wind, heat-dominated regime during November-May and, therefore, the formation and maintenance of the ASMWP is not dependent on the near surface stratification.