929 resultados para Cerebellar Diseases
Resumo:
Management of Papaya diseases in North Queensland.
Resumo:
Androgenetic alopecia (AGA) is a highly heritable condition and the most common form of hair loss in humans. Susceptibility loci have been described on the X chromosome and chromosome 20, but these loci explain a minority of its heritable variance. We conducted a large-scale meta-analysis of seven genome-wide association studies for early-onset AGA in 12,806 individuals of European ancestry. While replicating the two AGA loci on the X chromosome and chromosome 20, six novel susceptibility loci reached genome-wide significance (p = 2.62x10(-)(9)-1.01x10(-)(1)(2)). Unexpectedly, we identified a risk allele at 17q21.31 that was recently associated with Parkinson's disease (PD) at a genome-wide significant level. We then tested the association between early-onset AGA and the risk of PD in a cross-sectional analysis of 568 PD cases and 7,664 controls. Early-onset AGA cases had significantly increased odds of subsequent PD (OR = 1.28, 95% confidence interval: 1.06-1.55, p = 8.9x10(-)(3)). Further, the AGA susceptibility alleles at the 17q21.31 locus are on the H1 haplotype, which is under negative selection in Europeans and has been linked to decreased fertility. Combining the risk alleles of six novel and two established susceptibility loci, we created a genotype risk score and tested its association with AGA in an additional sample. Individuals in the highest risk quartile of a genotype score had an approximately six-fold increased risk of early-onset AGA [odds ratio (OR) = 5.78, p = 1.4x10(-)(8)(8)]. Our results highlight unexpected associations between early-onset AGA, Parkinson's disease, and decreased fertility, providing important insights into the pathophysiology of these conditions.
Resumo:
Virus diseases cause serious yield and quality losses in field grown cucurbit crops worldwide. In Australia, the main viruses of cucurbits are Papaya ringspot virus (PRSV), Squash mosaic virus (SqMV), Watermelon mosaic virus (WMV) and Zucchini yellow mosaic virus (ZYMV). Plants infected early have severely distorted fruit. High infection incidences, of ZYMV and PRSV in crops cause losses of marketable fruit of up to 100% and infected crops are often abandoned. Two new alternative hosts of ZYMV were identified, the native cucurbit Cucumis maderaspatanus and wild legume Rhyncosia minima. No new alternative hosts of PRSV, SqMV or WMV were found in Western Australia or Queensland. Seed transmission of ZYMV (0.7%) was found in seedlings grown from ZYMV-infected fruit of zucchini but not of pumpkin. None was detected with PRSV or SqMV in zucchini or pumpkin seedlings, respectively. ZYMV spread to pumpkins by aphids was greater downwind than upwind of a virus source. Delaying sowing by 2 weeks decreased ZYMV spread. Millet non-host barriers between pumpkin plantings slowed ZYMV infection. Host resistance gene (zym) in cucumber cultivars was effective against ZYMV. Pumpkin cultivars with resistance gene (Zym) became infected under high virus pressure but leaf symptoms were milder and infected plants higher yielding with more market-acceptable fruit than those without Zym. Most zucchini cultivars with Zym developed severe leaf and fruit symptoms. ZYMV, PRSV, WMV and SqMV spread readily from infected to healthy cucurbit plants by direct leaf contact. ZYMV survives and remains infective on diverse surfaces for up to 6 hours but can be inactivated by some disinfectants. Phylogenetic analysis indicates at least three separate introductions of ZYMV into Australia, with new introductions rarely occurring. ZYMV isolates clustered into three groups according to collection location i) Kununurra, ii) Northern Territory and iii) Carnarvon, Qld and Vic. A multiplex Real-Time PCR was developed which distinguished between the three groups of Australian isolates. Integrated disease management (IDM) strategies for virus diseases of vegetable cucurbit crops grown in the field were improved incorporating the new information gathered. These strategies are aimed at causing using minimal extra expense, labour demands and disruption to normal practices.
Resumo:
A major barrier to accessing healthcare services is spending, and the extended time that non-communicable diseases require treatment for means that many people around the world do not have proper access to care. Saval Khanal from Sankalpa Foundation, Nepal, Lennert Veerman and Samantha Hollingworth from the University of Queensland and Lisa Nissen from Queensland University of Technology lay out the results of their study and establish a method to forecast medicine use in Nepal.
Resumo:
The purpose of the report is to summarise progress in developing vegetable production systems with improved soil health that overcome soil limitations with the potential to suppress soil borne diseases. Management approaches to soil health improvement were regionally specific to overcome regional soil limitations in different production environments.
Resumo:
• To undertake an audit of management systems used for tomato spotted wilt virus (TSWV) in greenhouse and field production with the aim of improving disease management determining knowledge gaps in virus-vector relationships. • To investigate the basis for the development of resistance breaking strains of TSWV in capsicums and apply this to virus management in capsicums. • To further develop effective virus management systems in vegetable cucurbit crops. Aspects to be investigated include value of barrier crops, non-insecticide products and cultivar tolerance to virus. • To further develop and assess the adoption and impact of integrated viral disease management systems in field grown and protected cropping systems as part of the vegetable industry development plan.
Resumo:
Grey mould, powdery mildew and stem-end rot are major diseases affecting the strawberry industry. Some of the chemicals used are ineffective under wet weather, have limits to the number of applications allowed in a season or may become ineffective in the long-term because of the development of resistance in the fungi. We will assess the effectiveness of the chemicals currently used by the strawberry industry and whether the fruit rot fungi are resistant to these fungicides. We will screen other chemicals that are used to control these diseases in related crops. We will also evaluate new chemicals in collaboration with the crop protectant industry. We will also undertake similar work to control nematodes in strawberry fields.
Resumo:
Insect pest diagnostics.
Resumo:
The aims of this project will provide capacity in virology expertise to help protect Australian cotton from virus diseases including both existing and those that pose significant biosecurity threats. This project will also provide continued capacity in virology to support the cotton industry.
Resumo:
Root disease causes about $503 million in losses annually to Australia's wheat and barley industries. Because of these large losses and in many cases the difficulty in reducing these losses through breeding or management, root diseases are candidates for solutions through genetic modification (GM). Through an extensive review of the scientific literature and patents, a range of approaches to GM solutions to root diseases are critically discussed. Given the high cost of regulatory approval for GM crops and a complex intellectual property (IP) landscape, it is likely that research in this area will be done in collaboration with international partners.
Resumo:
In the first part of this thesis the association of different forms of sinonasal diseases and plasma concentrations of C3, C4, immunoglobulins, immunoglobulin G subclasses, C4A and C4B gene numbers were studied in 287 adult patients and 150 sex-matched adult controls. Patients were well characterized and stratified into groups using strict clinical criteria and females and males were also studied as separate groups. Severe primary antibody antibody deficiencies were rare in patients coming to sinonasal operations. Female patients had more recurrent sinusitis and other mucosal infections and males had more nasal polyposis. Upregulation of complement activity was seen in acute rhinosinusitis patients (high levels of plasma C3, C4, and complement classical pathway activity CH50) and male patients coming to sinonasal operations (high levels of plasma C3 and C4). In females, total and partial C4B deficiencies and lower levels of IgG1 and IgG3 were associated with rhinosinusitis leading to sinonasal operations. C4A deficiencies were found to predispose to severe chronic rhinosinusitis in females and males. In female patients with chronic or recurrent rhinosinusitis with nasal polyposis C4B deficiencies seem to predispose to the disease, but in males with a similar disease C4B deficiencies seem to be protective. This suggests a different pathophysiology between sexes in this form of sinonasal disease. In the second part of this thesis work 213 children coming to elective tonsillectomy were studied and compared with 155 randomly selected school children. An association with recurrent upper respiratory tract infections and hypersensitivity disorders was seen especially in children under 7 years of age. However, this association was not seen in levels of specific IgE to respiratory allergens in the same age group. Both symptomatic respiratory allergy and specific IgE to respiratory allergens became more common in boys than girls over 7 years of age. We were able to show that although both rhinoviruses and bacterial pathogens were found in the tonsils, no association between their presence and clinical forms of tonsillar disease was seen. The ability of GAS to bind complement regulators FH and C4BP did not differ between strains causing tonsillar diseases or septicemia, suggesting that other virulence mechanisms of the bacteria are more important.
Resumo:
Diseases remain a significant impediment to the achievement of maximum yield potential of pulses (chickpea, peanut and mungbean) and sunflowers in the GRDC northern region. This project worked closely with public and private breeding programs to identify sources of resistance to the major diseases of pulses and sunflower that dominate in the region. Through varied surveillance activities, a watching brief on pulse and sunflower diseases was maintained and a timely and appropriate response was made to several significant disease outbreaks. Information on the biology and management of diseases was extended to clients in a wide variety of ways.
Resumo:
Marinesco-Sjögren syndrome (MSS) is a rare autosomal recessive neurodegenerative disorder characterized by cerebellar ataxia due to cerebellar cortical atrophy, infantile- or childhood-onset bilateral cataracts, progressive myopathy, and mild to severe mental retardation. Additional features include hypergonadotropic hypogonadism, various skeletal abnormalities, short stature, and strabismus. The neuroradiologic hallmarks are hypoplasia of both the vermis and cerebellar hemispheres. The histopathologic findings include severe cerebellar atrophy and loss of Purkinje and granule cells. The common pathologic findings in muscle biopsy are variation in muscle fiber size, atrophic fibers, fatty replacement, and rimmed vacuole formation. The presence of marked cerebellar atrophy with myopathy distinguishes MSS from another rare syndrome, the congenital cataracts, facial dysmorphism, and neuropathy syndrome (CCFDN). Previously, work by others had resulted in the identification of an MSS locus on chromosome 5q31. A subtype of MSS with myoglobinuria and neuropathy had been linked to the CCFDN locus on chromosome 18qter, at which mutations in the CTDP1 gene had been identified. We confirmed linkage to the previously identified locus on chromosome 5q31 in two Finnish families with eight affected individuals, reduced the critical region by fine-mapping, and identified SIL1 as a gene underlying MSS. We found a common homozygous founder mutation in all Finnish patients. The same mutation was also present in patient samples from Norway and Sweden. Altogether, we identified eight mutations in SIL1, including nonsense, frameshift, splice site alterations, and one missense mutation. SIL1 encodes a nucleotide exchange factor for the endoplasmic reticulum (ER) resident heat-shock protein 70 chaperone GRP78. GRP78 functions in protein synthesis and quality control of the newly synthesized polypeptides. It senses and responds to stressful cellular conditions. We showed that in mice, SIL1 and GRP78 show highly similar spatial and temporal tissue expression in developing and mature brain, eye, and muscle. Studying endogenous proteins in mouse primary hippocampal neurons, we found that SIL1 and GRP78 colocalize and that SIL1 localizes to the ER. We studied the subcellular localization of two mutant proteins, a missense mutant found in two patients and an artificial mutant lacking the ER retrieval signal, and found that both mutant proteins formed aggregates within the ER. Well in line with our findings and the clinical features of MSS, recent work by Zhao et al. showed that a truncation of SIL1 causes ataxia and cerebellar Purkinje cell loss in the naturally occurring woozy mutant mouse. Prior to Purkinje cell degeneration, the unfolded protein response is initiated and abnormal protein accumulations are present. MSS thus joins the group of protein misfolding and accumulation diseases. These findings highlight the importance of SIL1 and the role of the ER in neuronal function and survival. The results presented in this thesis provide tools for the molecular genetic diagnostics of MSS and give a basis for future studies on the molecular pathogenesis of MSS. Understanding the mechanisms behind this pleiotropic syndrome may provide insights into more common forms of ataxia, myopathy, and neurodegeneration.