932 resultados para Capping layer
Resumo:
Purpose: To evaluate in vitro the microshear bond strength of adhesive systems applied to dentin according to manufacturers` instructions, associated or not with a hydrophobic layer of unfilled resin. Materials and Methods: Six self-etching adhesives (Clearfil SE Bond, Kuraray Medical; AdheSE, lvoclar Vivadent; Xeno III, Dentsply; I Bond, Heraeus-Kulzer; Bond Force, Tokuyama; Futurabond DC, Voco) were tested. The labial dentin of sixty bovine incisors was exposed, and the teeth were divided into two groups according to the application or not of an extra hydrophobic resin layer (Scotchbond Multi Purpose Plus, bottle 3). Six composite cylinders (Filtek Z250, 3M ESPE) were built up on each treated surface. Specimens were stored in distilled water at 37 C for 24 h and then subjected to the microshear bond strength test in a universal testing machine at a crosshead speed of 0.5 mm/min. Microshear bond strength values were analyzed by 2-way ANOVA and Tukey`s post-hoc test. Failure mode was determined using a stereomicroscope under 20X magnification. Results: The application of the hydrophobic resin layer did not affect bond strength, except for AdheSE. However, the bond strengths with the hydrophobic layer were similar among the six tested systems (Clearfil: 17.1 +/- 7.9; AdheSE: 14.5 +/- 7.1; Xeno III: 12.8 +/- 7.7; I Bond: 9.5 +/- 5.8; Bond Force: 17.5 +/- 4.1; Futurabond: 7.7 +/- 2.3). When used as recommended by the manufacturers, Bond Force presented statistically higher bond strength than AdheSE and I Bond (p < 0.05) (Clearfil 10.4 +/- 4.9; AdheSE 1.6 +/- 1.6; Xeno III: 9.0 +/- 3.8; I Bond: 3.0 +/- 1.5; Bond Force: 14 +/- 3.9; Futurabond: 8.8 +/- 3.8). Failure mode was predominantly adhesive. Conclusion: The bond strength of the self-etching systems tested was not significantly affected by the application of a hydrophobic layer, but a significant improvement was observed in AdheSE.
Resumo:
The present randomized, controlled prospective study evaluated the histomorphological response of human dental pulps capped with two grey mineral trioxide aggregate (MTA) compounds. Pulp exposures were performed on the occlusal floor of 40 human permanent pre-molars. The pulp was capped either with ProRoot (Dentsply) or MTA-Angelus (Angelus) and restored with zinc oxide eugenol cement. After 30 and 60 days, teeth were extracted and processed for histological examination and the effects on the pulp were scored. The data were subjected to Kruskal-Wallis and Conover tests (alpha = 0.05). In five out of the 40 teeth bacteria were present in pulp tissue. No significant difference was observed between the two materials (P > 0.05) in terms of overall histological features (hard tissue bridge, inflammatory response, giant cells and particles of capping materials). Overall, 94% and 88% of the specimens capped with MTA-Angelus and ProRoot, respectively, showed either total or partial hard tissue bridge formation (P > 0.05). Both commercial materials ProRoot (Dentsply) and MTA-Angelus (Angelus) produced similar responses in the pulp when used for pulp capping in intact, caries-free teeth.
Resumo:
Statement of the Problem: Adhesive systems can spread differently onto a substrate and, consequently, influence bonding. Purpose: The purpose of this study was to evaluate the effect of differently oriented dentin surfaces and the regional variation of specimens on adhesive layer thickness and microtensile bond strength (MTBS). Materials and Methods: Twenty-four molars were sectioned mesiodistally to expose flat buccal and lingual halves. Standardized drop volumes of adhesive systems (Single Bond [SB] and Prime & Bond 2.1 [PB2.1]) were applied to dentin according to the manufacturer`s instructions. Teeth halves were randomly divided into groups: 1A-SB/parallel to gravity; 1B-SB/perpendicular to gravity; 2A-PB2.1/parallel to gravity; and 2B-PB2.1/perpendicular to gravity. The bonded assemblies were stored in 37 degrees C distilled water for 24 hours and then sectioned to obtain dentin sticks (0.8 mm(2)). The adhesive layer thickness was determined in a light microscope (x200), and after 48 hours the specimens were subjected to MTBS test. Data were analyzed by one-way and two-way analysis of variance and Student-Newman-Keuls tests. Results: Mean values (MPa +/- SD) of MTBS were: 39.1 +/- 12.9 (1A); 32.9 +/- 12.4 (1B); 52.9 +/- 15.2 (2A); and 52.3 +/- 16.5 (2B). The adhesive systems` thicknesses (mu m +/- SD) were: 11.2 +/- 2.9 (1A); 18.1 +/- 7.3 (1B); 4.2 +/- 1.8 (2A); and 3.9 +/- 1.3 (2B). No correlation between bond strength and adhesive layer thickness for both SB and PB2.1 (r = -0.224, p = 0.112 and r = 0.099, p = 0.491, respectively) was observed. Conclusions: The differently oriented dentin surfaces and the regional variation of specimens on the adhesive layer thickness are material-dependent. These variables do not influence the adhesive systems` bond strength to dentin. CLINICAL SIGNIFICANCE Adhesive systems have different viscosities and spread differently onto a substrate, influencing the bond strength and also the adhesive layer thickness. Adhesive thickness does not influence dentin bond strength, but it may impair adequate solvent evaporation, polymer conversion, and may also determine water sorption and adhesive degradation over time. In the literature, many studies have shown that the adhesive layer is a permeable membrane and can fail over timebecause ofits continuous plasticizing and degradation when in contact with water. Therefore, avoiding thick adhesive layers may minimize these problems and provide long-term success for adhesive restorations.
Resumo:
Aim. The aim of this study was to evaluate the concentration of calcium ions and smear layer removal by using root canal chelators according to flame atomic absorption spectrophotometry and scanning electron microscopy. Forty-two human maxillary central incisors were irrigated with 15% ethylenediaminetetraacetic acid (EDTA), 10% citric acid, 10% sodium citrate, apple vinegar, 5% acetic acid, 5% malic acid, and sodium hypochlorite. The concentration of calcium ions was measured by using flame atomic absorption spectrometry, and smear layer removal was determined by scanning electron microscopy. Mean +/- standard deviation, one-way analysis of variance, Tukey-Kramer, Kruskal-Wallis, Dunn, and kappa tests were used for statistical analysis. The use of 15% EDTA resulted in the greatest concentration of calcium ions followed by 10% citric acid; 15% EDTA and 10% citric acid were the most efficient solutions for removal of smear layer. (J Endod 2009;35:727-730)
Resumo:
Combinatorial optimization problems share an interesting property with spin glass systems in that their state spaces can exhibit ultrametric structure. We use sampling methods to analyse the error surfaces of feedforward multi-layer perceptron neural networks learning encoder problems. The third order statistics of these points of attraction are examined and found to be arranged in a highly ultrametric way. This is a unique result for a finite, continuous parameter space. The implications of this result are discussed.
Resumo:
Experiments to investigate the transition process in hypervelocity boundary layers were performed in the T4 free-piston shock tunnel. An array of thin-film heat-transfer gauges was used to detect the location and extent of the transitional region on a 1500 mm long x 120 turn wide flat plate, which formed one of the walls of a duct. The experiments were performed in a Mach 6 flow of air with 6- and 12-MJ/kg nozzle-supply enthalpies at unit Reynolds numbers ranging from 1.6 x 10(6) to 4.9 x 10(6) m(-1). The results show that the characteristics typical of transition taking place through the initiation, growth, and merger of turbulent spots are evident in the heat-transfer signals. A 2-mm-high excrescence located 440 turn from the leading edge was found to be capable of generating a turbulent wedge within an otherwise laminar boundary layer at a unit Reynolds number of 2.6 x 10(6) m(-1) at the 6-MJ/kg condition. A tripping strip, located 100 mm from the leading edge and consisting of a line 37 teeth of 2 rum height equally spaced and spanning the test surface, was also found to be capable of advancing the transition location at the same condition and at the higher enthalpy condition.
Resumo:
In standard cylindrical gradient coils consisting of a single layer of wires, a limiting factor in achieving very large magnetic field gradients is the rapid increase in coil resistance with efficiency. This is a particular problem in small-bore scanners, such as those used for MR microscopy. By adopting a multi-layer design in which the coil wires are allowed to spread out into multiple layers wound at increasing radii, a more favourable scaling of resistance with efficiency is achieved, thus allowing the design of more powerful gradient coils with acceptable resistance values. Previously this approach has been applied to the design of unshielded, longitudinal, and transverse gradient coils. Here, the multi-layer approach has been extended to allow the design of actively shielded multi-layer gradient coils, and also to produce coils exhibiting enhanced cooling characteristics. An iterative approach to modelling the steady-state temperature distribution within the coil has also been developed. Results indicate that a good level of screening can be achieved in multi-layer coils, that small versions of such coils can yield higher efficiencies at fixed resistance than conventional two-layer (primary and screen) coils, and that performance improves as the number of layers of increases. Simulations show that by optimising multi-layer coils for cooling it is possible to achieve significantly higher gradient strengths at a fixed maximum operating temperature. A four-layer coil of 8 mm inner diameter has been constructed and used to test the steady-state temperature model. (C) 2003 Elsevier Inc. All rights reserved.
Resumo:
A research program on atmospheric boundary layer processes and local wind regimes in complex terrain was conducted in the vicinity of Lake Tekapo in the southern Alps of New Zealand, during two 1-month field campaigns in 1997 and 1999. The effects of the interaction of thermal and dynamic forcing were of specific interest, with a particular focus on the interaction of thermal forcing of differing scales. The rationale and objectives of the field and modeling program are described, along with the methodology used to achieve them. Specific research aims include improved knowledge of the role of surface forcing associated with varying energy balances across heterogeneous terrain, thermal influences on boundary layer and local wind development, and dynamic influences of the terrain through channeling effects. Data were collected using a network of surface meteorological and energy balance stations, radiosonde and pilot balloon soundings, tethered balloon and kite-based systems, sodar, and an instrumented light aircraft. These data are being used to investigate the energetics of surface heat fluxes, the effects of localized heating/cooling and advective processes on atmospheric boundary layer development, and dynamic channeling. A complementary program of numerical modeling includes application of the Regional Atmospheric Modeling System (RAMS) to case studies characterizing typical boundary layer structures and airflow patterns observed around Lake Tekapo. Some initial results derived from the special observation periods are used to illustrate progress made to date. In spite of the difficulties involved in obtaining good data and undertaking modeling experiments in such complex terrain, initial results show that surface thermal heterogeneity has a significant influence on local atmospheric structure and wind fields in the vicinity of the lake. This influence occurs particularly in the morning. However, dynamic channeling effects and the larger-scale thermal effect of the mountain region frequently override these more local features later in the day.
Resumo:
This paper presents a new model based on thermodynamic and molecular interaction between molecules to describe the vapour-liquid phase equilibria and surface tension of pure component. The model assumes that the bulk fluid can be characterised as set of parallel layers. Because of this molecular structure, we coin the model as the molecular layer structure theory (MLST). Each layer has two energetic components. One is the interaction energy of one molecule of that layer with all surrounding layers. The other component is the intra-layer Helmholtz free energy, which accounts for the internal energy and the entropy of that layer. The equilibrium between two separating phases is derived from the minimum of the grand potential, and the surface tension is calculated as the excess of the Helmholtz energy of the system. We test this model with a number of components, argon, krypton, ethane, n-butane, iso-butane, ethylene and sulphur hexafluoride, and the results are very satisfactory. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Nowadays despite improvements in usability and intuitiveness users have to adapt to the proposed systems to satisfy their needs. For instance, they must learn how to achieve tasks, how to interact with the system, and fulfill system's specifications. This paper proposes an approach to improve this situation enabling graphical user interface redefinition through virtualization and computer vision with the aim of increasing the system's usability. To achieve this goal the approach is based on enriched task models, virtualization and picture-driven computing.
Resumo:
We report on structural, electronic, and optical properties of boron-doped, hydrogenated nanocrystalline silicon (nc-Si:H) thin films deposited by plasma-enhanced chemical vapor deposition (PECVD) at a substrate temperature of 150 degrees C. Film properties were studied as a function of trimethylboron-to-silane ratio and film thickness. The absorption loss of 25% at a wavelength of 400 nm was measured for the 20 nm thick films on glass and glass/ZnO:Al substrates. By employing the p(+) nc-Si:H as a window layer, complete p-i-n structures were fabricated and characterized. Low leakage current and enhanced sensitivity in the UV/blue range were achieved by incorporating an a-SiC:H buffer between the p- and i-layers.
Resumo:
Characteristics of tunable wavelength filters based on a-SiC:H multi-layered stacked cells are studied both theoretically and experimentally. Results show that the light-activated photonic device combines the demultiplexing operation with the simultaneous photodetection and self amplification of an optical signal. The sensor is a bias wavelength current-controlled device that make use of changes in the wavelength of the background to control the power delivered to the load, acting a photonic active filter. Its gain depends on the background wavelength that controls the electrical field profile across the device.