920 resultados para Capacity of soil use
Resumo:
Intensively managed pastures in subtropical Australia under dairy production are nitrogen (N) loaded agro-ecosystems, with an increased pool of N available for denitrification. The magnitude of denitrification losses and N2:N2O partitioning in these agro-ecosystems is largely unknown, representing a major uncertainty when estimating total N loss and replacement. This study investigated the influence of different soil moisture contents on N2 and N2O emissions from a subtropical dairy pasture in Queensland, Australia. Intact soil cores were incubated over 15 days at 80% and 100% water-filled pore space (WFPS), after the application of 15N labelled nitrate, equivalent to 50 kg N ha−1. This setup enabled the direct quantification of N2 and N2O emissions following fertilisation using the 15N gas flux method. The main product of denitrification in both treatments was N2. N2 emissions exceeded N2O emissions by a factor of 8 ± 1 at 80% WFPS and a factor of 17 ± 2 at 100% WFPS. The total amount of N-N2 lost over the incubation period was 21.27 kg ± 2.10 N2-N ha−1 at 80% WFPS and 25.26 kg ± 2.79 kg ha−1 at 100% WFPS respectively. N2 emissions remained high at 100% WFPS, while related N2O emissions decreased. At 80% WFPS, N2 emissions increased constantly over time while N2O fluxes declined. Consequently, N2/(N2 + N2O) product ratios increased over the incubation period in both treatments. N2/(N2 + N2O) product ratios responded significantly to soil moisture, confirming WFPS as a key driver of denitrification. The substantial amount of fertiliser lost as N2 reveals the agronomic significance of denitrification as a major pathway of N loss for sub-tropical pastures at high WFPS and may explain the low fertiliser N use efficiency observed for these agro-ecosystems.
Resumo:
Nitrogen fertiliser is a major source of atmospheric N2O and over recent years there is growing evidence for a non-linear, exponential relationship between N fertiliser application rate and N2O emissions. However, there is still high uncertainty around the relationship of N fertiliser rate and N2O emissions for many cropping systems. We conducted year-round measurements of N2O emission and lint yield in four N rate treatments (0, 90, 180 and 270 kg N ha-1) in a cotton-fallow rotation on a black vertosol in Australia. We observed a nonlinear exponential response of N2O emissions to increasing N fertiliser rates with cumulative annual N2O emissions of 0.55 kg N ha-1, 0.67kg N ha-1, 1.07 kg N ha-1 and 1.89 kg N ha-1 for the four respective N fertiliser rates while no N response to yield occurred above 180N. The N fertiliser induced annual N2O EF factors increased from 0.13% to 0.29% and 0.50% for the 90N, 180N and 270N treatments respectively, significantly lower than the IPCC Tier 1 default value (1.0 %). This non-linear response suggests that an exponential N2O emissions model may be more appropriate for use in estimating emission of N2O from soils cultivated to cotton in Australia. It also demonstrates that improved agricultural N management practices can be adopted in cotton to substantially reduce N2O emissions without affecting yield potential.
Resumo:
This paper presents the results of laboratory model loading tests and numerical studies carried out on square footings supported on geosynthetic reinforced sand beds. The relative performance of different forms of geosynthetic reinforcement (i.e. geocell, planar layers and randomly distributed mesh elements) in foundation beds is compared; using same quantity of reinforcement in each test. A biaxial geogrid and a geonet are used for reinforcing the sand beds. Geonet is used in two forms of reinforcement, viz. Planar layers and geocell, while the biaxial geogrid was used in three forms of reinforcement, viz. planar layers, geocell and randomly distributed mesh elements. Laboratory load tests on unreinforced and reinforced footings are simulated in a numerical model and the results are analyzed to understand the distribution of displacements and stresses below the footing better. Both the experimental and numerical studies demonstrated that the geocell is the most advantageous form of soil reinforcement technique of those investigated, provided there is no rupture of the material during loading. Geogrid used in the form of randomly distributed mesh elements is found to be inferior to the other two forms. Some significant observations on the difference in reinforcement mechanism for different forms of reinforcement are presented in this paper.
Resumo:
Background In order to increase the efficient allocation of soil-transmitted helminth (STH) disease control resources in the Philippines, we aimed to describe for the first time the spatial variation in the prevalence of A. lumbricoides, T. trichiura and hookworm across the country, quantify the association between the physical environment and spatial variation of STH infection and develop predictive risk maps for each infection. Methodology/Principal Findings Data on STH infection from 35,573 individuals across the country were geolocated at the barangay level and included in the analysis. The analysis was stratified geographically in two major regions: 1) Luzon and the Visayas and 2) Mindanao. Bayesian geostatistical models of STH prevalence were developed, including age and sex of individuals and environmental variables (rainfall, land surface temperature and distance to inland water bodies) as predictors, and diagnostic uncertainty was incorporated. The role of environmental variables was different between regions of the Philippines. This analysis revealed that while A. lumbricoides and T. trichiura infections were widespread and highly endemic, hookworm infections were more circumscribed to smaller foci in the Visayas and Mindanao. Conclusions/Significance This analysis revealed significant spatial variation in STH infection prevalence within provinces of the Philippines. This suggests that a spatially targeted approach to STH interventions, including mass drug administration, is warranted. When financially possible, additional STH surveys should be prioritized to high-risk areas identified by our study in Luzon.
Resumo:
The ultimate bearing capacity of a number of multiple strip footings, identically spaced and equally loaded to failure at the same time,is computed by using the lower bound limit analysis in combination with finite elements. The efficiency factor due to the component of soil unit weight, is computed with respect to changes in the clear spacing (xi(gamma)) between the footings. It is noted that the failure load for a footing in the group becomes always greater than that of a single isolated footing. The values of xi(gamma) for the smooth footings are found to be always lower than the rough footings. The values ofxi(gamma) are found to increase continuously with a decrease in the spacing between footings. As compared to the available theoretical and experimental results reported in literature, the present analysis provides generally a little lower values of xi(gamma). (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Experimental studies (Bishop 1966) show that for saturated normally consolidated clay the cohesion varies linearly with depth. The ultimate bearing capacity in such soil is generally obtained by limit equilibrium and limit analysis methods. Sokolovski's (1960) approach to the method of characteristics is used to find the ultimate bearing capacity of saturated clay whose cohesion is homogeneous and isotropic. In this technical note, the method of characteristics is further developed to determine ultimate bearing capacity of clay whose cohesion varies linearly with depth.
Resumo:
By incorporating the variation of peak soil friction angle (phi) with mean principal stress (sigma(m)), the effect of anchor width (B) on vertical uplift resistance of a strip anchor plate has been examined. The anchor was embedded horizontally in a granular medium. The analysis was performed using lower bound finite element limit analysis and linear programming. An iterative procedure, proposed recently by the authors, was implemented to incorporate the variation of phi with sigma(m). It is noted that for a given embedment ratio, with a decrease in anchor width (B), (i) the uplift factor (F-gamma) increases continuously and (ii) the average ultimate uplift pressure (q(u)) decreases quite significantly. The scale effect becomes more pronounced at greater embedment ratios.
Resumo:
The method of characteristics coupled with a log-spiral failure surface was used to develop a theory for vertical uplift capacity of shallow horizontal strip anchors in a general c-phi soil. Uplift-capacity factors F(c), F(q) and F(gamma), for the effects of cohesion, surcharge, and density, respectively, have been established as functions of embedment ratio lambda and angle of friction phi. The extent of the failure surface at the ground has also been determined. Comparisons made with existing test results support the predictive capability of the theory, and comparisons with the analysis proposed by Meyerhof and Adams show the proposed analysis provides slightly more conservative predictions of pullout capacity.
Resumo:
The problem of finding the horizontal pullout capacity of vertical anchors embedded in sands with the inclusion of pseudostatic horizontal earthquake body forces, was tackled in this note. The analysis was carried out using an upper bound limit analysis, with the consideration of two different collapse mechanisms: bilinear and composite logarithmic spiral rupture surfaces. The results are presented in nondimensional form to find the pullout resistance with changes in earthquake acceleration for different combinations of embedment ratio of the anchor (lambda), friction angle of the soil (phi), and the anchor-soil interface wall friction angle (delta). The pullout resistance decreases quite substantially with increases in the magnitude of the earthquake acceleration. For values of delta up to about 0.25-0.5phi, the bilinear and composite logarithmic spiral rupture surfaces gave almost identical answers, whereas for higher values of delta, the choice of the logarithmic spiral provides significantly smaller pullout resistance. The results compare favorably with the existing theoretical data.
Resumo:
The method of stress characteristics has been employed to compute the end-bearing capacity of driven piles. The dependency of the soil internal friction angle on the stress level has been incorporated to achieve more realistic predictions for the end-bearing capacity of piles. The validity of the assumption of the superposition principle while using the bearing capacity equation based on soil plasticity concepts, when applied to deep foundations, has been examined. Fourteen pile case histories were compiled with cone penetration tests (CPT) performed in the vicinity of different pile locations. The end-bearing capacity of the piles was computed using different methods, namely, static analysis, effective stress approach, direct CPT, and the proposed approach. The comparison between predictions made by different methods and measured records shows that the stress-level-based method of stress characteristics compares better with experimental data. Finally, the end-bearing capacity of driven piles in sand was expressed in terms of a general expression with the addition of a new factor that accounts for different factors contributing to the bearing capacity. The influence of the soil nonassociative flow rule has also been included to achieve more realistic results.
Resumo:
The horizontal pullout capacity of a group of two vertical strip plate anchors, placed along the same vertical plane, in a fully cohesive soil has been computed by using the lower bound finite element limit analysis. The effect of spacing between the plate anchors on the magnitude of total group failure load (P-uT) has been evaluated. An increase of soil cohesion with depth has also been incorporated in the analysis. For a weightless medium, the total pullout resistance of the group becomes maximum corresponding to a certain optimum spacing between the anchor plates which has been found to vary generally between 0.5B and B; where B is the width of the anchor plate. As compared to a single plate anchor, the increase in the pullout resistance for a group of two anchors becomes greater at a higher embedment ratio. The effect of soil unit weight has also been analyzed. It is noted that the interference effect on the pullout resistance increases further with an increase in the unit weight of soil mass.
Resumo:
By applying the lower bound theorem of limit analysis in conjunction with finite elements and nonlinear optimization, the bearing capacity factor N has been computed for a rough strip footing by incorporating pseudostatic horizontal seismic body forces. As compared with different existing approaches, the present analysis is more rigorous, because it does not require an assumption of either the failure mechanism or the variation of the ratio of the shear to the normal stress along the footing-soil interface. The magnitude of N decreases considerably with an increase in the horizontal seismic acceleration coefficient (kh). With an increase in kh, a continuous spread in the extent of the plastic zone toward the direction of the horizontal seismic body force is noted. The results obtained from this paper have been found to compare well with the solutions reported in the literature. (C) 2013 American Society of Civil Engineers.
Resumo:
The horizontal pullout capacity of vertical anchors embedded in sand has been determined by using an upper bound theorem of the limit analysis in combination with finite elements. The numerical results are presented in nondimensional form to determine the pullout resistance for various combinations of embedment ratio of the anchor (H/B), internal friction angle (ϕ) of sand, and the anchor-soil interface friction angle (δ). The pullout resistance increases with increases in the values of embedment ratio, friction angle of sand and anchor-soil interface friction angle. As compared to earlier reported solutions in literature, the present solution provides a better upper bound on the ultimate collapse load.
Resumo:
The effect of consolidation on the undrained bearing capacity of both rough and smooth strip and circular surface foundations is investigated, examining the influence of the magnitude and duration of an applied preload and the initial over-consolidation ratio of the deposit. The investigation comprised small strain finite-element analysis, with the soil response represented by Modified Cam Clay. The results are distilled into dimensionless and generalised forms, from which simple trends emerge. Based on these results, a simple method for predicting the consolidated undrained bearing capacity is proposed.
Resumo:
The pullout capacity of an inclined strip plate anchor embedded in sand has been determined by using the lower bound theorem of the limit analysis in combination with finite elements and linear optimization. The numerical results in the form of pullout factors have been presented by changing gradually the inclination of the plate from horizontal to vertical. The pullout resistance increases significantly with an increase in the horizontal inclination (theta) of the plate especially for theta > 30 degrees. The effect of the anchor plate-soil interface friction angle (delta) on the pullout resistance becomes extensive for a vertical anchor but remains insignificant for a horizontal anchor. The development of the failure zone around the anchor plates was also studied by varying theta and delta. The results from the analysis match well with the theoretical and experimental results reported in literature.