449 resultados para CUADRATURA DE GAUSS
Resumo:
1) Chamamos um desvio relativo simples o quociente de um desvio, isto é, de uma diferença entre uma variável e sua média ou outro valor ideal, e o seu erro standard. D= v-v/ δ ou D = v-v2/δ Num desvio composto nós reunimos vários desvios de acordo com a equação: D = + Σ (v - 2)²: o o = o1/ o o Todo desvio relativo é caracterizado por dois graus de liberdade (número de variáveis livres) que indicam de quantas observações foi calculado o numerador (grau de liberdade nf1 ou simplesmente n2) e o denominador (grau de liberdade nf2 ou simplesmente n2). 2) Explicamos em detalhe que a chamada distribuição normal ou de OAUSS é apenas um caso especial que nós encontramos quando o erro standard do dividendo do desvio relativo é calculado de um número bem grande de observações ou determinado por uma fórmula teórica. Para provar este ponto foi demonstrado que a distribuição de GAUSS pode ser derivada da distribuição binomial quando o expoente desta torna-se igual a infinito (Fig.1). 3) Assim torna-se evidente que um estudo detalhado da variação do erro standard é necessário. Mostramos rapidamente que, depois de tentativas preliminares de LEXIS e HELMERT, a solução foi achada pelos estatísticos da escola londrina: KARL PEARSON, o autor anônimo conhecido pelo nome de STUDENT e finalmente R. A. FISHER. 4) Devemos hoje distinguir quatro tipos diferentes de dis- tribuições de acaso dos desvios relativos, em dependência de combinação dos graus de liberdade n1 e n2. Distribuição de: fisher 1 < nf1 < infinito 1 < nf2 < infinito ( formula 9-1) Pearson 1 < nf1 < infinito nf 2= infinito ( formula 3-2) Student nf2 = 1 1 < nf2= infinito ( formula 3-3) Gauss nf1 = 1 nf2= infinito ( formula 3-4) As formas das curvas (Fig. 2) e as fórmulas matemáticas dos quatro tipos de distribuição são amplamente discutidas, bem como os valores das suas constantes e de ordenadas especiais. 5) As distribuições de GAUSS e de STUDENT (Figs. 2 e 5) que correspondem a variação de desvios simples são sempre simétricas e atingem o seu máximo para a abcissa D = O, sendo o valor da ordenada correspondente igual ao valor da constante da distribuição, k1 e k2 respectivamente. 6) As distribuições de PEARSON e FISHER (Fig. 2) correspondentes à variação de desvios compostos, são descontínuas para o valor D = O, existindo sempre duas curvas isoladas, uma à direita e outra à esquerda do valor zero da abcissa. As curvas são assimétricas (Figs. 6 a 9), tornando-se mais e mais simétricas para os valores elevados dos graus de liberdade. 7) A natureza dos limites de probabilidade é discutida. Explicámos porque usam-se em geral os limites bilaterais para as distribuições de STUDENT e GAUSS e os limites unilaterais superiores para as distribuições de PEARSON e FISHER (Figs. 3 e 4). Para o cálculo dos limites deve-se então lembrar que o desvio simples, D = (v - v) : o tem o sinal positivo ou negativo, de modo que é em geral necessário determinar os limites bilaterais em ambos os lados da curva (GAUSS e STUDENT). Os desvios relativos compostos da forma D = O1 : o2 não têm sinal determinado, devendo desprezar-se os sinais. Em geral consideramos apenas o caso o1 ser maior do que o2 e os limites se determinam apenas na extremidade da curva que corresponde a valores maiores do que 1. (Limites unilaterais superiores das distribuições de PEARSON e FISHER). Quando a natureza dos dados indica a possibilidade de aparecerem tanto valores de o(maiores como menores do que o2,devemos usar os limites bilaterais, correspondendo os limites unilaterais de 5%, 1% e 0,1% de probabilidade, correspondendo a limites bilaterais de 10%, 2% e 0,2%. 8) As relações matemáticas das fórmulas das quatro distribuições são amplamente discutidas, como também a sua transformação de uma para outra quando fazemos as necessárias alterações nos graus de liberdade. Estas transformações provam matematicamente que todas as quatro distribuições de acaso formam um conjunto. Foi demonstrado matematicamente que a fórmula das distribuições de FISHER representa o caso geral de variação de acaso de um desvio relativo, se nós extendermos a sua definição desde nfl = 1 até infinito e desde nf2 = 1 até infinito. 9) Existe apenas uma distribuição de GAUSS; podemos calcular uma curva para cada combinação imaginável de graus de liberdade para as outras três distribuições. Porém, é matematicamente evidente que nos aproximamos a distribuições limitantes quando os valores dos graus de liberdade se aproximam ao valor infinito. Partindo de fórmulas com área unidade e usando o erro standard como unidade da abcissa, chegamos às seguintes transformações: a) A distribuição de STUDENT (Fig. 5) passa a distribuição de GAUSS quando o grau de liberdade n2 se aproxima ao valor infinito. Como aproximação ao infinito, suficiente na prática, podemos aceitar valores maiores do que n2 = 30. b) A distribuição de PEARSON (Fig. 6) passa para uma de GAUSS com média zero e erro standard unidade quando nl é igual a 1. Quando de outro lado, nl torna-se muito grande, a distribuição de PEARSON podia ser substituída por uma distribuição modificada de GAUSS, com média igual ale unidade da abcissa igual a 1 : V2 n 1 . Para fins práticos, valores de nl maiores do que 30 são em geral uma aproximação suficiente ao infinito. c) Os limites da distribuição de FISHER são um pouco mais difíceis para definir. I) Em primeiro lugar foram estudadas as distribuições com n1 = n2 = n e verificamos (Figs. 7 e 8) que aproximamo-nos a uma distribuição, transformada de GAUSS com média 1 e erro standard l : Vn, quando o valor cresce até o infinito. Como aproximação satisfatória podemos considerar nl = n2 = 100, ou já nl =r n2 - 50 (Fig. 8) II) Quando n1 e n2 diferem (Fig. 9) podemos distinguir dois casos: Se n1 é pequeno e n2 maior do que 100 podemos substituir a distribuição de FISHER pela distribuição correspondente de PEARSON. (Fig. 9, parte superior). Se porém n1é maior do que 50 e n2 maior do que 100, ou vice-versa, atingimos uma distribuição modificada de GAUSS com média 1 e erro standard 1: 2n1 n3 n1 + n2 10) As definições matemáticas e os limites de probabilidade para as diferentes distribuições de acaso são dadas em geral na literatura em formas bem diversas, usando-se diferentes sistemas de abcissas. Com referência às distribuições de FISHER, foi usado por este autor, inicialmente, o logarítmo natural do desvio relativo, como abcissa. SNEDECOR (1937) emprega o quadrado dos desvios relativos e BRIEGER (1937) o desvio relativo próprio. As distribuições de PEARSON são empregadas para o X2 teste de PEARSON e FISHER, usando como abcissa os valores de x² = D². n1 Foi exposto o meu ponto de vista, que estas desigualdades trazem desvantagens na aplicação dos testes, pois atribui-se um peso diferente aos números analisados em cada teste, que são somas de desvios quadrados no X2 teste, somas des desvios quadrados divididos pelo grau de liberdade ou varianças no F-teste de SNEDECOR, desvios simples no t-teste de STUDENT, etc.. Uma tábua dos limites de probabilidade de desvios relativos foi publicada por mim (BRIEGER 1937) e uma tábua mais extensa será publicada em breve, contendo os limites unilaterais e bilaterais, tanto para as distribuições de STUDENT como de FISHER. 11) Num capítulo final são discutidas várias complicações que podem surgir na análise. Entre elas quero apenas citar alguns problemas. a) Quando comparamos o desvio de um valor e sua média, deveríamos corretamente empregar também os erros de ambos estes valores: D = u- u o2 +²5 Mas não podemos aqui imediatamente aplicar os limites de qualquer das distribuições do acaso discutidas acima. Em geral a variação de v, medida por o , segue uma distribuição de STUDENT e a variação da média V segue uma distribuição de GAUSS. O problema a ser solucionado é, como reunir os limites destas distribuições num só teste. A solução prática do caso é de considerar a média como uma constante, e aplicar diretamente os limites de probabilidade das dstribuições de STUDENT com o grau de liberdade do erro o. Mas este é apenas uma solução prática. O problema mesmo é, em parte, solucionado pelo teste de BEHRENDS. b) Um outro problema se apresenta no curso dos métodos chamados "analysis of variance" ou decomposição do erro. Supomos que nós queremos comparar uma média parcial va com a média geral v . Mas podemos calcular o erro desta média parcial, por dois processos, ou partindo do erro individual aa ou do erro "dentro" oD que é, como explicado acima, uma média balançada de todos os m erros individuais. O emprego deste último garante um teste mais satisfatório e severo, pois êle é baseado sempre num grau de liberdade bastante elevado. Teremos que aplicar dois testes em seguida: Em primeiro lugar devemos decidir se o erro ou difere do êrro dentro: D = δa/δ0 n1 = np/n2 m. n p Se este teste for significante, uma substituição de oa pelo oD não será admissível. Mas mesmo quando o resultado for insignificante, ainda não temos certeza sobre a identidade dos dois erros, pois pode ser que a diferença entre eles é pequena e os graus de liberdade não são suficientes para permitir o reconhecimento desta diferença como significante. Podemos então substituirmos oa por oD de modo que n2 = m : np: D = V a - v / δa Np n = 1 n2 = np passa para D = v = - v/ δ Np n = 1 n2 = m.n p as como podemos incluir neste último teste uma apreciação das nossas dúvidas sobre o teste anterior oa: oD ? A melhor solução prática me parece fazer uso da determinação de oD, que é provavelmente mais exata do que oa, mas usar os graus de liberdade do teste simples: np = 1 / n2 = np para deixar margem para as nossas dúvidas sobre a igualdade de oa a oD. Estes dois exemplos devem ser suficientes para demonstrar que apesar dos grandes progressos que nós podíamos registrar na teoria da variação do acaso, ainda existem problemas importantes a serem solucionados.
Resumo:
Bd. 16/h.1
Resumo:
Bd. 15/h.1
Resumo:
Na aplicação do X2-teste devemos distinguir dois casos : Á) Quando as classes de variáveis são caracterizadas por freqüências esperadas entre p = 0,1 e p = 0,9, podemos aplicar o X2-teste praticamente sem restrição. É talvez aconselhável, mas não absolutamente necessário limitar o teste aos casos nos quais a freqüência esperada é pelo menos igual a 5. e porisso incluimos na Táboa II os limites da variação de dois binômios ( 1/2 + 1/2)n ( 1/4 + 3/4)n para valo r es pequenos de N e nos três limites convencionais de precisão : ,5%, 1% e 0,1%. Neste caso, os valores dos X2 Índividuais têm apenas valor limitado e devemos sempre tomar em consideração principalmente o X2 total. O valor para cada X2 individual pode ser calculado porqualquer das expressôe seguintes: x2 = (f obs - f esp)²> f. esp = ( f obs - pn)2 pn = ( f obs% - p)2.N p% (100 - p%) O delta-teste dá o mesmo resultado estatístico como o X2-teste com duas classes, sendo o valor do X2-total algébricamente igual ao quadrado do valor de delta. Assim pode ser mais fácil às vezes calcular o X2 total como quadrado do desvio relativo da. variação alternativa : x² = ( f obs -pn)² p. (1-p)N = ( f obs - p %)2.N p% (100 - p%) B) Quando há classes com freqüência esperada menor do que p = 0,1, podemos analisar os seus valores individuais de X2, e desprezar o valor X2 para as classes com p maior do que 0,9. O X2-teste, todavia, pode agora ser aplicado apenas, quando a freqüência esperada for pelo menos igual ou maior do que 5 ou melhor ainda, igual ou maior do que 10. Quando a freqüência esperada for menor do que 5, a variação das freqüências observadas segue uma distribuição de Poisson, não sendo possível a sua substituição pela aproximação Gausseana. A táboa I dá os limites da variação da série de Poisson para freqüências esperadas (em números) desde 0,001 até 15. A vantagem do emprego da nova táboa I para a comparação, classe por classe, entre distribuições esperadas e observadas é explicada num exemplo concreto. Por meio desta táboa obtemos informações muito mais detablhadas do que pelo X2-teste devido ao fato que neste último temos que reunir as classes nas extremidades das distribuições até que a freqüência esperada atinja pelo menos o valor 5. Incluimos como complemento uma táboa dos limites X2, pára 1 até 30 graus de liberdade, tirada de um outro trabalho recente (BRIEGER, 1946). Para valores maiores de graus da liberdade, podemos calcular os limites por dois processos: Podemos usar uma solução dada por Fischer: √ 2 X² -√ 2 nf = delta Devem ser aplicados os limites unilaterais da distribuição de Gauss : 5%:1, 64; 1%:2,32; 0,1%:3,09: Uma outra solução podemos obter segundo BRIEGER (1946) calculando o valor: √ x² / nf = teta X nf = teta e procurando os limites nas táboas para limites unilaterais de distribuições de Fischer, com nl = nf(X2); n2 = inf; (BRIEGER, 1946).
Resumo:
Bd. 13
Resumo:
In this paper we investigate the role of horospheres in Integral Geometry and Differential Geometry. In particular we study envelopes of families of horocycles by means of “support maps”. We define invariant “linear combinations” of support maps or curves. Finally we obtain Gauss-Bonnet type formulas and Chern-Lashof type inequalities.
Resumo:
In this paper we prove a formula for the analytic index of a basic Dirac-type operator on a Riemannian foliation, solving a problem that has been open for many years. We also consider more general indices given by twisting the basic Dirac operator by a representation of the orthogonal group. The formula is a sum of integrals over blowups of the strata of the foliation and also involves eta invariants of associated elliptic operators. As a special case, a Gauss-Bonnet formula for the basic Euler characteristic is obtained using two independent proofs.
Resumo:
We extend PML theory to account for information on the conditional moments up to order four, but without assuming a parametric model, to avoid a risk of misspecification of the conditional distribution. The key statistical tool is the quartic exponential family, which allows us to generalize the PML2 and QGPML1 methods proposed in Gourieroux et al. (1984) to PML4 and QGPML2 methods, respectively. An asymptotic theory is developed. The key numerical tool that we use is the Gauss-Freud integration scheme that solves a computational problem that has previously been raised in several fields. Simulation exercises demonstrate the feasibility and robustness of the methods [Authors]
Resumo:
Conté: Defenderse, ¿de quién?; Ataque a tres grandes símbolos; Bush, en el laberinto; Combatir a un enemigo oculto; La desconcertante "nueva normalidad"; El imperio vuelve a tener enemigo; Enseñanzas del 11 de septiembre; La proximidad del terror islamista;La controvertida guerra de Iraq; El aldabonazo del 11-M; El escándalo de las torturas en Iraq; La alerta europea; El aldabonazo de Londres; Europa, en primera línia; Porqué, ahora, en Londres; Iraq o la cuadratura del círculo; Un mundo de "agujeros negros"; Más allá de unas palabras; Respeto pero no coacción; España, en el punto de mira; Al Qaeda, en la turbulencia islamista; ¿Combatir o irse de Afganistán?; Todos vulnerables; La guerra secreta
Resumo:
O problema de otimização de mínimos quadrados e apresentado como uma classe importante de problemas de minimização sem restrições. A importância dessa classe de problemas deriva das bem conhecidas aplicações a estimação de parâmetros no contexto das analises de regressão e de resolução de sistemas de equações não lineares. Apresenta-se uma revisão dos métodos de otimização de mínimos quadrados lineares e de algumas técnicas conhecidas de linearização. Faz-se um estudo dos principais métodos de gradiente usados para problemas não lineares gerais: Métodos de Newton e suas modificações incluindo os métodos Quasi-Newton mais usados (DFP e BFGS). Introduzem-se depois métodos específicos de gradiente para problemas de mínimos quadrados: Gauss-Newton e Levenberg-Larquardt. Apresenta-se uma variedade de exemplos selecionados na literatura para testar os diferentes métodos usando rotinas MATLAB. Faz-se uma an alise comparativa dos algoritmos baseados nesses ensaios computacionais que exibem as vantagens e desvantagens dos diferentes métodos.
Resumo:
A concentração de radicais livres semiquinona (CRLS), determinada por ressonância paramagnética eletrônica (EPR), é considerada um índice do grau de humificação, sendo uma importante determinação em estudos qualitativos da matéria orgânica do solo. Neste trabalho, avaliou-se a interferência da fração mineral na quantificação da CRLS em agregados organominerais 20-53, 2-20 e < 2 ∝m de Podzólico Vermelho-Amarelo, Podzólico Vermelho-Escuro e Latossolo Roxo. A CRLS foi determinada pela área do sinal, estimada pela aproximação intensidade do sinal (I, em cm), multiplicada pela sua largura de linha ao quadrado (∆H², em Gauss). Os parâmetros espectrais I e ∆H foram obtidos em espectros de EPR com e sem interferência da fração mineral. No Podzólico Vermelho-Amarelo e no Podzólico Vermelho-Escuro, foram detectados dois sinais de radicais livres, um com um valor g 2,004 e largura de linha de 5-6 G, típico de radicais livres semiquinona, outro com um valor g 2,000 e largura de linha de 2-3 G, associado à fração mineral, especificamente ao quartzo (SiO2), como confirmado posteriormente por análise de amostra purificada. Nestes solos, a interferência da fração mineral na obtenção dos parâmetros I e ∆H resultou num erro na estimativa da CRLS de -7 a +488%, comparativamente às quantificações realizadas a partir dos espectros sem interferência da fração mineral. No Latossolo Roxo, os altos teores de Fe3+ não permitiram detectar os sinais dos radicais livres semiquinona por causa da sobreposição dos sinais do metal. A eliminação da interferência da fração mineral demonstrou ser um pré-requisito fundamental no estudo da matéria orgânica por EPR em agregados organominerais, para a qual são sugeridos alguns procedimentos alternativos.
Resumo:
Usando os dados reportados em artigos publicados em revistas brasileiras e trabalhos apresentados em congressos nacionais, replicaram-se as aplicações da Lei de Lotka à literatura brasileira em 10 campos diferentes. Utilizou-se o modelo do poder inverso pelos métodos do mínimo quadrado e probabilidade máxima. Das 10 literaturas nacionais analisadas, somente a literatura de medicina, siderurgia, jaca e biblioteconomia ajustaram-se ao modelo do poder inverso generalizado pelo método dos mínimos quadrados. No entanto, só duas literaturas (veterinária e cartas do Arquivo Privado de Getúlio Vargas) não se ajustaram ao modelo quando se usou o método da máxima probabilidade. Para ambas literaturas, tentaram-se modelos diferentes. A literatura de veterinária ajustou-se à distribuição binomial negativa, e as cartas do Arquivo Privado de Getúlio Vargas ajustaram-se melhor à distribuição Gauss-Poisson Inversa Generalizada.
Resumo:
Estuda a produção estratificada dos autores produtores da literatura sobre a Lei de Lotka de 1922 a 2003 e analisa essa produtividade através dos modelos Poisson lognormal e Gauss Poisson inversa generalizada. Para tanto, faz uso dos três tipos de contagem da literatura produzida: contagem direta, contagem completa e contagem fracionada. Os dados da pesquisa são avaliados usando o teste qui-quadrado ao 0.05 nível de significância. Ambos os modelos ajustam-se muito bem à distribuição da literatura produzida, porém a distribuição Poisson Gauss inversa generalizada produz um chi-quadrado menor e prediz melhor o total de autores do que a distribuição Poisson Lognormal.
Resumo:
Este trabajo analiza la productividad científica de los autores que han publicado documentos en cuatro revistas de ciencia de la información editadas en Colombia desde 1978 a 2009. Se encontraron 555 autores, de los cuales 422 (76%) publicaron un único artículo y 78 (24%) publicaron 2 o más artículos. También se identificaron 11 autores como los más productivos con 21 y 7 artículos cada uno. El número de autores observados fueron estinados con los modelos del poder inverso generalizado, Gauss Poisson inversa generalizada y Poisson lognormal por el método de la máxima probabilidad. Las pruebas de ajuste estadístico chi-cuadrado y K-S mostraron que los tres modelos se ajustan a los datos observados en este trabajo.
Resumo:
Três formas de análise espacial foram comparadas à análise do modelo linear Gauss-Markov normal em experimentos de Genética, tendo-se suposto os efeitos de progênies como aleatórios: médias móveis nos dados brutos (MM), médias móveis nos dados residuais (Papadakis - PPD) e análise espacial por meio de modelagem de covariâncias residuais (AE). Inicialmente, ignorou-se a informação do controle local, para testar a efetividade da análise espacial. Posteriormente, foi verificado se haveria melhoras com as diferentes formas de análise espacial aplicadas ao modelo completo, considerando-se o controle local do delineamento em látice. Os valores médios de razões, entre estimativas de componentes de variância e de herdabilidade, foram usados como guia de discussão sobre qual a melhor forma de análise. Em geral, ignorar o delineamento experimental e usar somente a informação espacial resultou em análises ineficientes. Os modelos MM e PPD, em média, melhoraram o modelo original justificado pelo delineamento, embora a AE não o tenha melhorado. A AE, apesar de ineficiente, não mudou as estimativas dos componentes de variância e de herdabilidade. Esta propriedade garante que a combinação de efeitos aleatórios para progênies e a AE não violam as suposições (algumas delas justificadas pelo delineamento). Isto é especialmente útil com experimentos amplos, com grande número de progênies.