984 resultados para COUPLING REACTIONS
Resumo:
Well-dispersed palladium nanoparticles in mesoporous SBA- 15 SiO2 were prepared in a facile one-step approach during sol-gel route under reductive atmosphere. X-ray diffraction (XRD) results indicate that as-synthesized nanocomposites basically remain ordered two-dimensional hexagonal mesostructure while transmission electron microscopy (TEM) study exhibits a well dispersion of palladium nanoparticles within the mesoporous SBA-15 channels. The size of Pd nanoparticles is approximately in the range of 5-10nm. However, the resulting nanocomposites exhibit a highly catalytic activity and reused ability at least after five recycles without ligand in air for both the Suzuki and Heck coupling reactions.
Resumo:
A series of new G-symmetric chiral ligands 8, 9, 11 and 12, consisting of two binaphthyl units linked by a 2,2'-bipyridine bridge, has been synthesized via Suzuki cross-coupling reactions.
Resumo:
Bronsted acid-base ionic liquids (GILs) based on guanidine and acetic acid are efficient reaction media for palladium-catalyzed Heck reactions. They offer the advantages of high activity and reusability. GIL2 plays multiple roles in the reaction: it could act as solvent, as a strong base to facilitate beta-hydride elimination, and as a ligand to stabilize activated Pd species.
Resumo:
A novel method for the preparation of oligothiophene molecular wires is described via a bi-directional solid-phase synthesis. Using an alternating sequence of bromination and Stille coupling reactions, oligomers were obtained up to the heptamer in excellent yield and purity.
Resumo:
Novel soluble alternating conjugated copolymers (PFSP and PFSR) comprised of phenothiazine unit are synthesized by palladium-catalyzed Suzuki coupling reactions. Their thermal stability, photoluminescence, electroluminescence, hole injection and transport properties are investigated. The resulting copolymers exhibit good thermal stability and excellent hole-injection ability (about -5.2eV), which are closely matched to the work function of ITO. Double-layer devices demonstrate that PFSP is a promising hole-transporting material for electroluminescent devices.
Resumo:
A simple method for the fabrication of Pd nanoparticles is described. The three-dimensional Pd nanoparticle films are directly formed on a gold electrode surface by simple electrodeposition at -200 mV from a solution of 1 M H2SO4+0.01 mM K2PdCl4. X-Ray photoelectron spectroscopy verifies the constant composition of the Pd nanoparticle films. Atomic force microscopy proves that the as-prepared Pd nanoparticles are uniformly distributed with an average particle diameter of 45-60 nm. It is confirmed that the morphology of the Pd nanoparticle films are correlated with the electrodeposition time and the state of the Au substrate. The resulting Pd-nanoparticle-film-modified electrode possesses high catalytic activity for the reduction of dissolved oxygen in 0.1 M KCl solution. Freshly prepared Pd nanoparticles can catalyze the reduction of O-2 by a 4-electron process at -200 mV in 0.1 M KCl, but this system is not very stable. The cathodic peaks corresponding to the reduction of O-2 gradually decrease with potential cycling and at last reach a steady state. Then two well-defined reduction peaks are observed at -390 and -600 mV vs. Ag/AgCl/KCl (sat.). Those two peaks correspond to a 2-step process for the 4-electron reduction pathway of O-2 in this neutral medium.
Resumo:
Conjugated bisthioester 1 was synthesized applying Sonogashira coupling reactions. Using self-assembly in combination with nanoparticles deposition techniques, we developed a novel method to fabricate a "gold electrode-molecular wire monolayers-gold nanoparticles" sandwich-like structure. Rapid electron propagation through this sandwich-like structure was observed by cyclic voltammetry and ac impedance measurements.
Resumo:
Monodispersed phenyl-capped trianiline and tetraaniline were successfully synthesized by the reactions of diphenylamine with acetaldehyde-based Sckiff's bases of N-phenyl-1,4-phenylenediamine and 1,4-phenylenediamine, respectively, in the presence of ammonium persulfate and hydrochloric acid, subsequent deprotonation and reduction with phenylhydrazine. The reaction mechanism probably involves the slow hydrolysis of the Sckiff's bases and subsequent oxidative coupling reactions of the formed ammonium salts with diphenylamine at pseudo-high dilution condition of the salts.
Resumo:
A mild and efficient copper-catalyzed system for N-arylation of alkylamines and N-H heterocycles with aryl iodides using a novel, readily prepared and highly stable oxime-functionalized phosphine oxide ligand was developed. The coupling reactions could even be performed in solvent-free conditions with moderate to good yields. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Development of novel synthetic methodology for selective transformation of organic compounds is a central element underpinning organic synthesis with control of chemo-, regio- and stereoselectivity a very high priority. Reactions which can be conducted under mild reaction conditions and, ideally in an environmentally attractive manner, are particularly advantageous. The principal objective of this thesis was to explore the synthesis, reactivity and synthetic utility of a series of α,β-thio-β-chloroenones. The stereochemical features of these transformations and the potential of this novel series of compounds in the synthesis of bioactive compounds were of particular interest. In exploring the reactivity of these compounds, the key transformations included nucleophilic additions and Stille cross-coupling at the β-carbon. Chapter 1 reviews the literature relevant to the research conducted, and focuses in particular on the synthesis of β-chloroenones and related unsaturated carbonyl compounds. The synthesis of chalcone compounds from various precursors is also discussed, with particular emphasis on the use of palladium cross-coupling reactions in the preparation of these compounds. The biological activity of chalcones is also summarised in this chapter. The second chapter delineates the stereoselective synthesis of the novel α-thio-β-chloroenones from the corresponding α-thioketones in a multistep reaction cascade initiated by a NCS-mediated chlorination. A range of both alkyl and aryl β-chloroenones were prepared in this work and the oxidation of these compounds to the corresponding sulfoxides and sulfones is also outlined. The electrophilicity of the β-carbon of the enones was examined in nucleophilic addition/substitution reactions with successful access to a variety of synthetically useful novel adducts including acetals and enaminoketones. Investigation of the synthetic potential of the Stille cross-coupling reaction with the novel α-thio-β-chloroenones was explored and provided an efficient route for the synthesis of a novel series of chalcones. Most importantly this new methodology provided a new and synthetically powerful approach for carbon-carbon bond formation at the β-carbon under mild neutral conditions. A preliminary investigation into the use of these β-chloroenones as dienophiles in Diels-Alder cycloaddition reactions is also discussed in this chapter. Chapter 2 also reports the nucleophilic addition of N, O, S and C nucleophiles to previously described β-chloroacrylamides and their corresponding sulfoxide derivatives. This work builds on previous research carried out in this programme and the reactivity of these β-chloroacrylamides at the sulfide and sulfoxide level is compared. Comparison of the reactivity of the β-chloroacrylamides, in nucleophilic substitution and Stille-coupling, with that of the novel β-chloroenones is of interest. Finally, the biological activity of both the β-chloroenones and the β-chloroacrylamides in terms of cytotoxicity is summarised in Chapter 2. The final chapter, Chapter 3, details the full experimental procedures, including spectroscopic and analytical data for the compounds prepared during this research.
Resumo:
The objective of this project was to prepare a range of 4-substituted 3-(2H)-furanones, and to investigate the relationship between their molecular structures and photoluminescence properties. The effects of substituents and conjugated linker unit were also investigated. After generation of the key 3(2H)-furanone heterocycle, extension of the conjugated framework at the C-4 position was achieved through Pd(0)-catalysed coupling reactions. Chapter one of the thesis comprises a review of the relavent literature and is split into three sections. These include information about the prevalence of 3-(2H)-furanones as natural products and synthetic routes to 3-(2H)-furanones in general. The synthetic routes are divided according to the synthetic precursor employed. The final section of chapter one outlines the fundamental principles and application of photoluminescence to organic compounds in general. Chapter two contains the results of the research achieved in the course of this work and a discussion of the findings. Two routes were successfully employed to generate 4-unsubstituted 3-(2H)-furanone moieties: (i) base induced cyclisation of hydroxyenones and (ii) isoxazole chemistry. A number of methods which proved ineffective in the production of furanones with the desired substitution pattern are also detailed. The majority of this study was focused on the introduction of substituents at the C-4 position of the 3-(2H)-furanone ring. This was achieved through the use of Sonogashira and Suzuki cross coupling protocols for Pd(0) catalysed C-C bond formation. The further functionalisation of some compounds was performed using transfer hydrogenation and “click chemistry” methodologies. Finally, the photophysical properties of 3-(2H)-furanones prepared in this project are discussed and the effect of substitution patterns in a complementary “push push” and “push pull” manner have also been investigated. All the experimental data and details of the synthetic methods employed, for the compounds prepared during the course of this research is contained in chapter three together with the spectroscopic and analytical properties of the compounds prepared.
Resumo:
Summary: This chapter contains sections titled: * Introduction: CC Bond Formation via Cyclopalladation Reactions * Stoichiometric CH Activation Chemistry * Catalytic Chemistry * Arylations * Direct CH CH Coupling Reactions * Alkylations * Other Reactions * Conclusion * References
Resumo:
The chain growth probability (alpha value) is one of the most significant parameters in Fischer-Tropsch (FT) synthesis. To gain insight into the chain growth probability, we systematically studied the hydrogenation and C-C coupling reactions with different chain lengths on the stepped Co(0001) surface using density functional theory calculations. Our findings elucidate the relationship between the barriers of these elementary reactions and the chain length. Moreover, we derived a general expression of the chain growth probability and investigated the behavior of the alpha value observed experimentally. The high methane yield results from the lower chain growth rate for C-1 + C-1 coupling compared with the other coupling reactions. After C-1, the deviation of product distribution in FT synthesis from the Anderson-Schulz-Flory distribution is due to the chain length-dependent paraffin/olefin ratio. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
We systematically investigated the mechanism of the C-1 + C-1 coupling reactions using density functional theory. The activation energies of C-1 + C-1 coupling and carbon hydrogenation reactions on both flat and stepped surfaces were calculated and analyzed. Moreover, the coverages of adsorbed C-1 species were estimated, and the reaction rates of all possible C-1 + C-1 coupling pathways were quantitatively evaluated. The results suggest that the reactions of CH2 + CH2 and CH3 + C at steps are most likely to be the key C-1 + C-1 coupling steps in FT synthesis on Co catalysts. The reactions of C-2 + C-1 and C-3 + C-1 coupling also were studied; the results demonstrate that in addition to the pathways of RCH + CH2 and RCH2 + C, the coupling of RC + C and RC + CH also may contribute to the chain growth after C-1. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
Extensive density function theory calculations are performed to study the mechanism of the formation of aldehyde and alcohol on Co surfaces in Fischer-Tropsch synthesis, a challenging issue in heterogeneous catalysis. Three possible pathways for the production of formaldehyde and methanol on flat and stepped Co(0001) surfaces are investigated: (i) CO + 4H -> CHO + 3H -> CH2O + 2H -> CH3O + H -> CH3OH; (ii) CO + 4H -> COH + 3H -> CHOH + 2H -> CH2OH + H -> CH3OH; and (iii) the coupling reactions of CH2 + O -> CH2O and CH3 + OH -> CH3OH. It is found that these pathways are generally favored at step sites, and the preferred mechanism is pathway (i) via CHO. Furthermore, the three traditional chain growth mechanisms in Fischer-Tropsch synthesis are semi quantitatively compared and discussed. Our results suggest that the two mechanisms involving oxygenate intermediates (the CO-insertion and hydroxycarbene mechanisms) are less important than the carbene mechanism in the production of long chain hydrocarbons. However, the CO-insertion mechanism may be responsible for the production of long-chain oxygenates.