991 resultados para COPPER DEPOSITION
Resumo:
The aim of this research was to investigate the possibilities of roasting and leaching a bulk copper-zinc sulfide concentrate, and the subsequent separation of the metals from the leach solution by electrolytic deposition.
Resumo:
In the past few years a great deal of attention has been given to the electrodeposition of alloys. For the main part, this investigation has been of scientific interest only; but in a few instances, such work has attained commercial importance.
Resumo:
In this thesis the purpose was to obtain a good iron deposit from a relatively simple bath. The deposit was to be of good nature and low in Carbon content. Also included is a summary of the uses to which electrolytic iron can be put as well as a summary of work done by other researchers in depositing iron electrolytically.
Resumo:
The geochemistry of the youngest Mediterranean sapropel layer suggests changes in productivity and water column oxygen conditions during sapropel deposition. The Ba-enriched interval is broader than the organic-carbon-rich interval of this sapropel. We suggest that the Ba-enriched horizon records the original thickness of the sapropel prior to subsequent partial oxidation. The main carrier of Ba is barite, as microcrystals (0.5-5 µm ) having a morphology characteristic of marine barite, particularly abundant beneath high productivity regions. Ba concentrations do not change at the sapropel layer oxidation front and diagenetic barite crystals are absent, thus the Ba-enriched layer reflects original oceanic conditions of increased biological productivity during sapropel deposition and not diagenetic Ba remobilization. Paleoredox indicators point to restricted oxygenated bottom water but not to fully anoxic conditions. Detrital elements within this layer indicate a lower eolian terrigenous input, enhanced humidity, and increased precipitation/runoff, thus likely higher nutrient supply.
Resumo:
The stepped rotating cylinder electrode (SRCE) geometry has been developed as a simple aid to the practical study of the flow-enhanced corrosion and applied electrochemistry problems commonly observed under conditions of disturbed, turbulent flow. The electrodeposition of cupric ions from an acid sulphate plating bath has been used to characterise differential rates of mass transfer to the SRCE. The variation in thickness of electrodeposited copperfilms has allowed the mapping of local rates of mass transfer over the active surface of this geometry. Both optical and scanning electron microscopy were used for the examination of metallographic sections to provide a high resolution evaluation of the distribution of mass transfer coefficient. Results are also discussed using the convective-diffusion model in combination with the existing direct numerical flow simulation (DNS) data for this geometry.
Resumo:
This paper presents results on the preparation of microcapsules containing liquid organosilica, and their co-deposition with copper in an acidic copper electrolyte onto a carbon steel cathode to form a copper/microcapsule composite coating. Microscopic analyses of the surface and the cross-section of the coating confirm the incorporation of the liquid-containing microcapsules in the coating layer. The influence of microcapsules in the electrolyte on the cathode polarization, as well as that of process conditions on the microcapsule inclusion, is also discussed. (C) 2004 Kluwer Academic Publishers.
Resumo:
Alteration zones at the gold-rich Bajo de la Alumbrera porphyry copper deposit in northwestern Argentina are centered on several porphyritic intrusions. They are zoned from a central copper-iron sulfide and gold-mineralized potassic (biotite-K-feldspar +/- quartz) core outward to propylitic (chlorite-illite-epidote-calcite) assemblages. A mineralized intermediate argillic alteration assemblage (chlorite-illite +/- pyrite) has overprinted the potassic alteration zone across the top and sides of the deposit and is itself zoned outward into phyllic (quartzinuscovite-illite +/- pyrite) alteration. This study contributes new data to previously reported delta(18)O and delta D compositions of fluids responsible for the alteration at Bajo de la Alumbrera, and the data are used to infer likely ore-forming processes. Measured and calculated delta(18)O and delta D values of fluids (+8.3 to +10.2 and -33 to -81 parts per thousand, respectively) confirm a primary magmatic origin for the earliest potassic alteration phase. Lower temperature potassic alteration formed from magmatic fluids with lower delta D values (down to -123 parts per thousand). These depleted compositions are distinct from meteoric water and consistent with degassing and volatile exsolution of magmatic fluids derived from an underlying magma. Variability in the calculated composition of fluid associated with potassic alteration is explained in terms of phase separation (or boiling). if copper-iron sulfide deposition occurred during cooling (as proposed elsewhere), this cooling was largely a result of phase separation. Magmatic water was directly involved in the formation of overprinting intermediate argillic alteration assemblages at Bajo de la Alumbrera. Calculated delta(18)O and delta D values of fluids associated with this alteration range from +4.8 to +8.1 and -31 to -71 per mil, respectively Compositions determined for fluids associated with phyllic alteration (-0.8 to +10.2 and -31 to -119 parts per thousand) overlap with the values determined for the intermediate argillic alteration. We infer that phyllic alteration assemblages developed during two stages; the first was a high-temperature (400 degrees-300 degrees C) stage with D-depleted water (delta D = -66 to -119 parts per thousand). This compositional range may have resulted from magma degassing and/or the injection of new magmatic water into a compositionally evolved hydrothermal system. The isotopic variations also can be explained by increased fluid-rock interaction. The second stage of phyllic alteration occurred at a lower temperature (similar to 200 degrees C), and variations in the modeled isotopic compositions imply mixing of magmatic and meteoric waters. Ore deposition that occurred late in the evolution of the hydrothermal system was probably associated with further cooling of the magmatic fluid, in part caused by fluid-rock interaction and phase separation. Changing pH and/or oxygen fuoracity may have caused additional ore deposition. The ingress of meteoric water appears to postdate the bulk of mineralization and occurred as the system at Bajo de la Alumbrera waned.
Resumo:
This research was concerned with the effects of pulsed current on the electrodeposition of chromium and copper. In the case of the latter metal, a novel application has been studied and a theory proposed for the ability to improve throwing power by the joint use of organic additives and pulsed reverse current. During the course of the research, several improvements were made to the pulse plating unit.Chromium. A study was made of the effect of square wave pulsed current on various physical properties of deposits from three hard chromium plating electrolytes. The effect of varying frequency at a duty cycle of 50% on the mean bulk internal stress, visual appearance, hardness, crack characteristics and surface topography of the electrodeposits was determined. X-ray diffraction techniques were used to study the phases present in the deposits. The effect of varying frequency on the cathodic efficiencies of the electrolytes was also determined. It was found that pulsed current reduced the internal stress of deposits from the sulphate catalysed electrolyte. It also reduced or eliminated cracking of deposits and reduced deposit brightness. Under certain conditions, pulsed current was found to induce the co-deposition of hydrides of chromium. Deposit hardness was found to be reduced by the use of pulsed current. Cathodic efficiencies of the high efficiency electrolytes were reduced by use of pulsed current although this effect was minimised at high frequencies. The sulphate catalysed electrolyte showed an increase in efficiency over the frequency range where hydrides were co-deposited.Copper. The polarisation behaviour of acid copper solutions containing polyethers, sulphopropyl sulphides and chloride ions was studied using both direct and pulse reverse current. The effect of these additives on the rest potentials of copper deposits immersed in the electrolyte was also studied. Hole Throwing Power on printed circuit boards was determined using a specially designed test cell. The effect of pulsed reverse current on the hole throwing power of commercially produced printed circuit boards was also studied. Polyethers were found to have an inhibiting effect on the deposition of copper whereas the sulphopropyl sulphides produced a stimulating (i.e. depolarising) effect. Studies of rest potentials made when both additives were present indicated that the sulphopropyl sulphide was preferentially adsorbed. The use of pulsed reverse current in solutions containing both polyether and sulphopropyl sulphide was found to cause desorption of the sulphopropyl sulphide at the cathode surface. Thus, at higher current densities, the inhibiting effect of the polyether produced an increase in the cathodic polarisation potential. At lower current densities, the depolarisation effect of the sulphopropyl sulphide could still occur. On printed circuit boards, this effect was found to produce an increase in the `hole throwing power' due to depolarisation of the holes relative to the surface of the boards. Typically, using direct current, hole/surface thickness ratios of 40% were obtained when plating 0.6 mm holes in a 3.2 mm thick board at a current density of 3 A/dm2 whereas using pulsed reverse current, ratios of 80% could be obtained at an equivalent rate of deposition. This was observed both in laboratory tests and on commercially plated boards.
Resumo:
The literature available on submerged arc welding of copper and copper alloys, submerged arc welding with strip electrodes, and related areas has been reviewed in depth. Copper cladding of mild steel substrates by deposition from strip electrodes using the submerged arc welding process has been successful. A wide range of parameters, and several fluxes have been investigated. The range of deposit compositions is 66.4% Cu to 95.7% Cu. The weld beads have been metallographically examined using optical and electron microscopy. Equating weld beads to a thermodynamical equivalent of iron has proven to be an accurate and simplified means of handling quantitative data for multicomponent welds. Empirical equations derived using theoretical considerations characterize the weld bead dimensions as functions of the welding parameters and hence composition. The melting rate for strip electrodes is dependent upon the current-voltage product. Weld nugget size is increased by increased thermal transfer efficiencies resulting from stirring which is current dependent. The presence of Fe2O3 in a flux has been demonstrated to diminish electrode melting rate and drastically increase penetration, making flux choice the prime consideration in cladding operations. A theoretical model for welding with strip electrodes and the submerged arc process is presented.
Resumo:
Nanostructured copper containing materials of CuO, Cu3(PO4)3 and Cu2P2O7 have been prepared by solid-state pyrolysis of molecular CuCl2·NC5H4OH (I), CuCl2·CNCH2C6H4OH (II), oligomeric [Cu(PPh3)Cl]4 (III), N3P3[OC6H4CH2CN·CuCl]6[PF6] (IV), N3P3[OC6H5]5[OC5H4N·Cu][PF6] (V), polymeric chitosan·(CuCl2)n (VI) and polystyrene-co-4-vinylpyridine PS-b-4-PVP·(CuCl2) (VII) precursors. The products strongly depend on the precursor used. The pyrolytic products from phosphorus-containing precursors (III), (IV) and (V) are Cu phosphates or pyrophosphates, while non-phosphorous-containing precursors (VI) and (VII), result in mainly CuO. The use of chitosan as a solid-state template/stabilizer induces the formation of CuO and Cu2O nanoparticles. Copper pyrophosphate (Cu2P2O7) deposited on Si using (IV) as the precursor exhibits single-crystal dots of average diameter 100 nm and heights equivalent to twice the unit cell b-axis (1.5–1.7 nm) and an areal density of 5.1–7.7 Gigadots/in.2. Cu2P2O7 deposited from precursor (VI) exhibits unique labyrinthine high surface area deposits. The morphology of CuO deposited on Si from pyrolysis of (VI) depends on the polymer/Cu meta ratio. Magnetic measurements performed using SQUID on CuO nanoparticle networks suggest superparamagnetic behavior. The results give insights into compositional, shape and morphological control of the as-formed nanostructures through the structure of the precursors.
Resumo:
Cu(acac)2 is chemisorbed on TiO2 particles [P-25 (anatase/rutile = 4/1 w/w), Degussa] via coordination by surface Ti–OH groups without elimination of the acac ligand. Post-heating of the Cu(acac)2-adsorbed TiO2 at 773 K yields molecular scale copper(II) oxide clusters on the surface (CuO/TiO2). The copper loading amount (Γ/Cu ions nm–2) is controlled in a wide range by the Cu(acac)2 concentration and the chemisorption–calcination cycle number. Valence band (VB) X-ray photoelectron and photoluminescence spectroscopy indicated that the VB maximum of TiO2 rises up with increasing Γ, while vacant midgap levels are generated. The surface modification gives rise to visible-light activity and concomitant significant increase in UV-light activity for the degradation of 2-naphthol and p-cresol. Prolonging irradiation time leads to the decomposition to CO2, which increases in proportion to irradiation time. The photocatalytic activity strongly depends on the loading, Γ, with an optimum value of Γ for the photocatalytic activity. Electrochemical measurements suggest that the surface CuO clusters promote the reduction of adsorbed O2. First principles density functional theory simulations clearly show that, at Γ < 1, unoccupied Cu 3d levels are generated in the midgap region, and at Γ > 1, the VB maximum rises and the unoccupied Cu 3d levels move to the conduction band minimum of TiO2. These results suggest that visible-light excitation of CuO/TiO2 causes the bulk-to-surface interfacial electron transfer at low coverage and the surface-to-bulk interfacial electron transfer at high coverage. We conclude that the surface CuO clusters enhance the separation of photogenerated charge carriers by the interfacial electron transfer and the subsequent reduction of adsorbed O2 to achieve the compatibility of high levels of visible and UV-light activities.
Resumo:
Raman analysis of dilute aqueous solutions is normally prevented by their low signal levels. A very general method to increase the concentration to detectable levels is to evaporate droplets of the sample to dryness, creating solid deposits which are then Raman probed. Here, superhydrophobic (SHP) wires with hydrophilic tips have been used as supports for drying droplets, which have the advantage that the residue is automatically deposited at the tip. The SHP wires were readily prepared in minutes using electroless galvanic deposition of Ag onto copper wires followed by modification with a polyfluorothiol (3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-heptadecafluoro-1-decanethiol, HDFT). Cutting the coated wires with a scalpel revealed hydrophilic tips which could support droplets whose maximum size was determined by the wire diameter. Typically, 230 μm wires were used to support 0.6 μL droplets. Evaporation of dilute melamine droplets gave solid deposits which could be observed by scanning electron microscopy (SEM) and Raman spectroscopy. The limit of detection for melamine using a two stage evaporation procedure was 1 × 10-6 mol dm-3. The physical appearance of dried droplets of sucrose and glucose showed that the samples retained significant amounts of water, even under high vacuum. Nonetheless, the Raman detection limits of sucrose and glucose were 5 × 10-4 and 2.5 × 10-3 mol dm-3, respectively, which is similar to the sensitivity reported for surface-enhanced Raman spectroscopy (SERS) detection of glucose. It was also possible to quantify the two sugars in mixtures at concentrations which were similar to those found in human blood through multivariate analysis.
Resumo:
Carbon films were energetically deposited onto copper and nickel foil using a filtered cathodic vacuum arc deposition system. Raman spectroscopy, scanning electron microscopy, transmission electron microscopy and UV–visible spectroscopy showed that graphene films of uniform thickness with up to 10 layers can be deposited onto copper foil at moderate temperatures of 750 C. The resulting films, which can be prepared at high deposition rates, were comparable to graphene films grown at 1050 C using chemical vapour deposition (CVD). This difference in growth temperature is attributed to dynamic annealing which occurs as the film grows from the energetic carbon flux. In the case of nickel substrates, it was found that graphene films can also be prepared at moderate substrate temperatures. However much higher carbon doses were required, indicating that the growth mode differs between substrates as observed in CVD grown graphene. The films deposited onto nickel were also highly non uniform in thickness, indicating that the grain structure of the nickel substrate influenced the growth of graphene layers.