801 resultados para CONFORMATIONS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Die Hämocyanine der Cephalopoden Nautilus pompilius und Sepia officinalis sorgen für den Sauerstofftransport zwischen den Kiemen und den Geweben. Sie bestehen aus einem zylindrischen Dekamer mit interner Kragenstruktur. Während eine Untereinheit (also eine Polypeptidkette) bei NpH aus sieben paralogen funktionellen Domänen (FU-a bis FU-g) besteht, führte ein Genduplikationsereignis der FU-d zu acht FUs in SoH (a, b, c, d, d´, e, f, g). In allen Mollusken Hämocyaninen bilden sechs dieser FUs den äußeren Ring und die restlichen die interne Kragenstruktur. rnrnIn dieser Arbeit wurde ein dreidimensionales Modell des Hämocyanins von Sepia officinalis (SoH) erstellt. Die Rekonstruktion, mit einer Auflösung von 8,8Å (FSC=0,5), erlaubt das Einpassen von Homolologiemodellen und somit das Erstellen eines molekularen Modells mit pseudo atomarer Auflösung. Des Weiteren wurden zwei Rekonstruktionen des Hämocyanins von Nautilus pompilius (NpH) in verschiedenen Oxygenierungszuständen erstellt. Die auf 10 und 8,1Å aufgelösten Modelle zeigen zwei verschiedene Konformationen des Proteins. Daraus ließ sich eine Modellvorstellung über die allosterische Funktionsweise ableiten. Die hier erreichte Auflösung von 8Å ist die momentan höchste eines Molluskenhämocyanins. rnAuf Grundlage des molekularen Modells von SoH konnte die Topologie des Proteins aufgeklärt werden. Es wurde gezeigt, dass die zusätzliche FU-d´ in den Kragen integriert ist und somit die prinzipielle Wandarchitektur aller Mollusken Hämocyanine identisch ist. Wie die Analyse des erstellten molekularen Modells zeigt werden sind die beiden Isoformen (SoH1 und SoH2) in den Bereichen der Interfaces nahezu identisch; auch der Vergleich mit NpH zeigt grosse Übereinstimmungen. Des weiteren konnte eine Fülle von Informationen bezüglich der allosterischen Signalübertragung innerhalb des Moleküls gewonnen werden. rnDer Versuch, NpH in verschiedenen Oxygenierungszuständen zu zeigen, war erfolgreich. Die Datensätze, die unter zwei atmosphärischen Bedingungen präpariert wurden, führten reproduzierbar zu zwei unterschiedlichen Rekonstruktionen. Dies zeigt, daß der hier entwickelte experimentelle Ansatz funktioniert. Er kann nun routinemäßig auf andere Proteine angewandt werden. Wie der strukturelle Vergleich zeigte, verändert sich die Orientierung der FUs durch die Oxygenierung leicht. Dies wiederum beeinflusst die Anordnung innerhalb der Interfaces sowie die Abstände zwischen den beteiligten Aminosäuren. Aus dieser Analyse konnte eine Modellvorstellung zum allosterischen Signaltransfer innerhalb des Moleküls abgeleitet werden, die auf einer Umordnung von Salzbrücken basiert.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The supermolecule approach has been used to model the hydration of cyclic 3‘,5‘-adenosine monophosphate, cAMP. Model building combined with PM3 optimizations predict that the anti conformer of cAMP is capable of hydrogen bonding to an additional solvent water molecule compared to the syn conformer. The addition of one water to the syn superstructure with concurrent rotation of the base about the glycosyl bond to form the anti superstructure leads to an additional enthalpy of stabilization of approximately −6 kcal/mol at the PM3 level. This specific solute−solvent interaction is an example of a large solvent effect, as the method predicts that cAMP has a conformational preference for the anti isomer in solution. This conformational preference results from a change in the number of specific solute−solvent interactions in this system. This prediction could be tested by NMR techniques. The number of waters predicted to be in the first hydration sphere around cAMP is in agreement with the results of hydration studies of nucleotides in DNA. In addition, the detailed picture of solvation about this cyclic nucleotide is in agreement with infrared experimental results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Breast cancer is the most common cancer among women. Tamoxifen is the preferred drug for estrogen receptor-positive breast cancer treatment, yet many of these cancers are intrinsically resistant to tamoxifen or acquire resistance during treatment. Therefore, scientists are searching for breast cancer drugs that have different molecular targets. Previous work revealed that 8-mer and cyclic 9-mer peptides inhibit breast cancer in mouse and rat model systems, interacting with an unknown receptor, while peptides smaller than eight amino acids did not inhibit breast cancer. We have shown that the use of replica exchange molecular dynamics predicts structure and dynamics of active peptides, leading to the discovery of smaller peptides with full biological activity. These simulations identified smaller peptide analogs with a conserved turn, a β-turn formed in the larger peptides. These analogs inhibit estrogen-dependent cell growth in a mouse uterine growth assay, a test showing reliable correlation with human breast cancer inhibition. We outline the computational methods that were tried and used with the experimental information that led to the successful completion of this research.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Peptide transporters (PTRs) of the large PTR family facilitate the uptake of di- and tripeptides to provide cells with amino acids for protein synthesis and for metabolic intermediates. Although several PTRs have been structurally and functionally characterized, how drugs modulate peptide transport remains unclear. To obtain insight into this mechanism, we characterize inhibitor binding to the Escherichia coli PTR dipeptide and tripeptide permease A (DtpA), which shows substrate specificities similar to its human homolog hPEPT1. After demonstrating that Lys[Z-NO2]-Val, the strongest inhibitor of hPEPT1, also acts as a high-affinity inhibitor for DtpA, we used single-molecule force spectroscopy to localize the structural segments stabilizing the peptide transporter and investigated which of these structural segments change stability upon inhibitor binding. This characterization was done with DtpA embedded in the lipid membrane and exposed to physiologically relevant conditions. In the unbound state, DtpA adopts two main alternate conformations in which transmembrane α-helix (TMH) 2 is either stabilized (in ∼43% of DtpA molecules) or not (in ∼57% of DtpA molecules). The two conformations are understood to represent the inward- and outward-facing conformational states of the transporter. With increasing inhibitor concentration, the conformation characterized by a stabilized TMH 2 becomes increasingly prevalent, reaching ∼92% at saturation. Our measurements further suggest that Lys[Z-NO2]-Val interacts with discrete residues in TMH 2 that are important for ligand binding and substrate affinity. These interactions in turn stabilize TMH 2, thereby promoting the inhibited conformation of DtpA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The haloarchaeal phototaxis receptor sensory rhodopsin I (SRI) in complex with its transducer HtrI delivers an attractant signal from excitation with an orange photon and a repellent signal from a second near-UV photon excitation. Using a proteoliposome system with purified SRI in complex with its transducer HtrI, we identified by site-directed fluorescence labeling a site (Ser(155)) on SRI that is conformationally active in signal relay to HtrI. Using site-directed spin labeling of Ser(155)Cys with a nitroxide side chain, we detected a change in conformation following one-photon excitation such that the spin probe exhibits a splitting of the outer hyperfine extrema (2A'(zz)) significantly smaller than that of the electron paramagnetic resonance spectrum in the dark state. The dark conformations of five mutant complexes that do not discriminate between orange and near-UV excitation show shifts to lower or higher 2A'(zz) values correlated with the alterations in their motility behavior to one- and two-photon stimuli. These data are interpreted in terms of a model in which the dark complex is populated by two conformers in the wild type, one that inhibits the CheA kinase (A) and the other that activates it (R), shifted in the dark by mutations and shifted in the wild-type SRI-HtrI complex in opposite directions by one-photon and two-photon reactions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We used integrin αLβ2 heterodimers containing I domains locked open (active) or closed (inactive) with disulfide bonds to investigate regulatory interactions among domains in integrins. mAbs to the αL I domain and β2 I-like domain inhibit adhesion of wild-type αLβ2 to intercellular adhesion molecule-1. However, with αLβ2 containing a locked open I domain, mAbs to the I domain were subdivided into subsets (i) that did not inhibit, and thus appear to inhibit by favoring the closed conformation, and (ii) that did inhibit, and thus appear to bind to the ligand binding site. Furthermore, αLβ2 containing a locked open I domain was completely resistant to inhibition by mAbs to the β2 I-like domain, but became fully susceptible to inhibition after disulfide reduction with DTT. This finding suggests that the I-like domain indirectly contributes to ligand binding by regulating opening of the I domain in wild-type αLβ2. Conversely, locking the I domain closed partially restrained conformational change of the I-like domain by Mn2+, as measured with mAb m24, which we map here to the β2 I-like domain. By contrast, locking the I domain closed or open did not affect constitutive or Mn2+-induced exposure of the KIM127 epitope in the β2 stalk region. Furthermore, locked open I domains, in αLβ2 complexes or expressed in isolation on the cell surface, bound to intercellular adhesion molecule-1 equivalently in Mg2+ and Mn2+. These results suggest that Mn2+ activates αLβ2 by binding to a site other than the I domain, most likely the I-like domain of β2.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

By detailed NMR analysis of a human telomere repeating unit, d(CCCTAA), we have found that three distinct tetramers, each of which consists of four symmetric single-strands, slowly exchange in a slightly acidic solution. Our new finding is a novel i-motif topology (T-form) where T4 is intercalated between C1 and C2 of the other duplex. The other two tetramers have a topology where C1 is intercalated between C2 and C3 of the other parallel duplex, resulting in the non-stacking T4 residues (R-form), and a topology where C1 is stacked between C3 and T4 of the other duplex (S-form). From the NMR denaturation profile, the R-form is the most stable of the three structures in the temperature range of 15–50°C, the S-form the second and the T-form the least stable. The thermodynamic parameters indicate that the T-form is the most enthalpically driven and entropically opposed, and its population is increased with decreasing temperature. The T-form structure determined by restrained molecular dynamics calculation suggests that inter-strand van der Waals contacts in the narrow grooves should contribute to the enthalpic stabilization of the T-form.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have investigated the structure of the cell adhesion molecule L1 by electron microscopy. We were particularly interested in the conformation of the four N-terminal immunoglobulin domains, because x-ray diffraction showed that these domains are bent into a horseshoe shape in the related molecules hemolin and axonin-1. Surprisingly, rotary-shadowed specimens showed the molecules to be elongated, with no indication of the horseshoe shape. However, sedimentation data suggested that these domains of L1 were folded into a compact shape in solution; therefore, this prompted us to look at the molecules by an alternative technique, negative stain. The negative stain images showed a compact shape consistent with the expected horseshoe conformation. We speculate that in rotary shadowing the contact with the mica caused a distortion of the protein, weakening the bonds forming the horseshoe and permitting the molecule to extend. We have thus confirmed that the L1 molecule is primarily in the horseshoe conformation in solution, and we have visualized for the first time its opening into an extended conformation. Our study resolves conflicting interpretations from previous electron microscopy studies of L1.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The unwinding of the parental DNA duplex during replication causes a positive linking number difference, or superhelical strain, to build up around the elongating replication fork. The branching at the fork and this strain bring about different conformations from that of (−) supercoiled DNA that is not being replicated. The replicating DNA can form (+) precatenanes, in which the daughter DNAs are intertwined, and (+) supercoils. Topoisomerases have the essential role of relieving the superhelical strain by removing these structures. Stalled replication forks of molecules with a (+) superhelical strain have the additional option of regressing, forming a four-way junction at the replication fork. This four-way junction can be acted on by recombination enzymes to restart replication. Replication and chromosome folding are made easier by topological domain barriers, which sequester the substrates for topoisomerases into defined and concentrated regions. Domain barriers also allow replicated DNA to be (−) supercoiled. We discuss the importance of replicating DNA conformations and the roles of topoisomerases, focusing on recent work from our laboratory.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Proton transfer reactivity of isolated charge states of the protein hen egg-white lysozyme shows that multiple distinct conformations of this protein are stable in the gas phase. The reactivities of the 9+ and 10+ charge state ions, formed by electrospray ionization of "native" (disulfide-intact) and "denatured" (disulfide-reduced) solutions, are consistent with values calculated for ions in their crystal structure and fully denatured conformations, respectively. Charge states below 8+ of both forms, formed by proton stripping, have similar or indistinguishable reactivities, indicating that the disulfide-reduced ions fold in the gas phase to a more compact conformation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We examine how the polypeptide chain in protein crystal structures exploits the multivalent hydrogen-bonding potential of bound water molecules. This shows that multiple interactions with a single water molecule tend to occur locally along the chain. A distinctive internal-coordinate representation of the local water-binding segments reveals several consensus conformations. The fractional water occupancy of each was found by comparison of the total number of conformations in the database regardless of the presence or absence of bound water. The water molecule appears particularly frequently in type II beta-turn geometries and an N-terminal helix feature. This work constitutes a first step into assessing not only the generality but also the significance of specific water binding in globular proteins.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fragments of proteins (short peptides) that "fold" suggest a mechanism of how complete conformational search in protein folding is avoided. We used a computational method to determine structures of two foldable peptides in explicit water: RVEW and CSVTC. The optimization starts from random structures and no experimental constraints are used. In agreement with NMR data, the simulations find a hydrophobic pair (Val/Trp) in REVW. The structure of CSVTC is induced by a surface water that bridges two amide hydrogens, a drive to structure hypothesized by Ben-Naim [Ben-Naim, A. (1990) J. Chem. Phys. 93, 8196-8210] that is largely ignored in studies of folding. Tendency to structure in short peptide chains suggests a mechanism for the formation of short-range nucleation sites in protein folding.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Short peptides corresponding to two to four a-helical turns of proteins are not thermodynamically stable helices in water. Unstructured octapeptide Ac-His1*-Ala2-Ala3-His4*-His5*-Glu6-Leu7-His8*-NH2 (1) reacts with two [Pd ((NH2)-N-15(CH2)(2) (NH2)-N-15)(NO3)(2)] in water to form a kinetically stable intermediate, [{Pden}(2)-{(1,4)(5,8)-peptide}](2), in which two 19-membered metallocyclic rings stabilize two peptide turns. Slow subsequent folding to a thermodynamically more stable two-turn a-helix drives the equilibrium to [{Pden}(2)-{(1,5)(4,8)-peptide}] (3), featuring two 22-membered rings. This transformation from unstructured peptide via turns to an a-helix suggests that metal clips might be useful probes for investigating peptide folding.