925 resultados para COMPUTER VISUAL SYNDROME
Resumo:
In the modern connected world, pervasive computing has become reality. Thanks to the ubiquity of mobile computing devices and emerging cloud-based services, the users permanently stay connected to their data. This introduces a slew of new security challenges, including the problem of multi-device key management and single-sign-on architectures. One solution to this problem is the utilization of secure side-channels for authentication, including the visual channel as vicinity proof. However, existing approaches often assume confidentiality of the visual channel, or provide only insufficient means of mitigating a man-in-the-middle attack. In this work, we introduce QR-Auth, a two-step, 2D barcode based authentication scheme for mobile devices which aims specifically at key management and key sharing across devices in a pervasive environment. It requires minimal user interaction and therefore provides better usability than most existing schemes, without compromising its security. We show how our approach fits in existing authorization delegation and one-time-password generation schemes, and that it is resilient to man-in-the-middle attacks.
Resumo:
This paper reports on the implementation of a non-invasive electroencephalography-based brain-computer interface to control functions of a car in a driving simulator. The system is comprised of a Cleveland Medical Devices BioRadio 150 physiological signal recorder, a MATLAB-based BCI and an OKTAL SCANeR advanced driving experience simulator. The system utilizes steady-state visual-evoked potentials for the BCI paradigm, elicited by frequency-modulated high-power LEDs and recorded with the electrode placement of Oz-Fz with Fz as ground. A three-class online brain-computer interface was developed and interfaced with an advanced driving simulator to control functions of the car, including acceleration and steering. The findings are mainly exploratory but provide an indication of the feasibility and challenges of brain-controlled on-road cars for the future, in addition to a safe, simulated BCI driving environment to use as a foundation for research into overcoming these challenges.
Resumo:
This paper presents an Image Based Visual Servo control design for Fixed Wing Unmanned Aerial Vehicles tracking locally linear infrastructure in the presence of wind using a body fixed imaging sensor. Visual servoing offers improved data collection by posing the tracking task as one of controlling a feature as viewed by the inspection sensor, although is complicated by the introduction of wind as aircraft heading and course angle no longer align. In this work it is shown that the effects of wind alter the desired line angle required for continuous tracking to equal the wind correction angle as would be calculated to set a desired course. A control solution is then sort by linearizing the interaction matrix about the new feature pose such that kinematics of the feature can be augmented with the lateral dynamics of the aircraft, from which a state feedback control design is developed. Simulation results are presented comparing no compensation, integral control and the proposed controller using the wind correction angle, followed by an assessment of response to atmospheric disturbances in the form of turbulence and wind gusts
Resumo:
Background: Optimal adherence to antiretroviral therapy (ART) is necessary for people living with HIV/AIDS (PLHIV). There have been relatively few systematic analyses of factors that promote or inhibit adherence to antiretroviral therapy among PLHIV in Asia. This study assessed ART adherence and examined factors associated with suboptimal adherence in northern Viet Nam. Methods: Data from 615 PLHIV on ART in two urban and three rural outpatient clinics were collected by medical record extraction and from patient interviews using audio computer-assisted self-interview (ACASI). Results: The prevalence of suboptimal adherence was estimated to be 24.9% via a visual analogue scale (VAS) of past-month dose-missing and 29.1% using a modified Adult AIDS Clinical Trial Group scale for on-time dose-taking in the past 4 days. Factors significantly associated with the more conservative VAS score were: depression (p < 0.001), side-effect experiences (p < 0.001), heavy alcohol use (p = 0.001), chance health locus of control (p = 0.003), low perceived quality of information from care providers (p = 0.04) and low social connectedness (p = 0.03). Illicit drug use alone was not significantly associated with suboptimal adherence, but interacted with heavy alcohol use to reduce adherence (p < 0.001). Conclusions: This is the largest survey of ART adherence yet reported from Asia and the first in a developing country to use the ACASI method in this context. The evidence strongly indicates that ART services in Viet Nam should include screening and treatment for depression, linkage with alcohol and/or drug dependence treatment, and counselling to address the belief that chance or luck determines health outcomes.
Resumo:
Vision-based SLAM is mostly a solved problem providing clear, sharp images can be obtained. However, in outdoor environments a number of factors such as rough terrain, high speeds and hardware limitations can result in these conditions not being met. High speed transit on rough terrain can lead to image blur and under/over exposure, problems that cannot easily be dealt with using low cost hardware. Furthermore, recently there has been a growth in interest in lifelong autonomy for robots, which brings with it the challenge in outdoor environments of dealing with a moving sun and lack of constant artificial lighting. In this paper, we present a lightweight approach to visual localization and visual odometry that addresses the challenges posed by perceptual change and low cost cameras. The approach combines low resolution imagery with the SLAM algorithm, RatSLAM. We test the system using a cheap consumer camera mounted on a small vehicle in a mixed urban and vegetated environment, at times ranging from dawn to dusk and in conditions ranging from sunny weather to rain. We first show that the system is able to provide reliable mapping and recall over the course of the day and incrementally incorporate new visual scenes from different times into an existing map. We then restrict the system to only learning visual scenes at one time of day, and show that the system is still able to localize and map at other times of day. The results demonstrate the viability of the approach in situations where image quality is poor and environmental or hardware factors preclude the use of visual features.
Resumo:
Current older adult capability data-sets fail to account for the effects of everyday environmental conditions on capability. This article details a study that investigates the effects of everyday ambient illumination conditions (overcast, 6000 lx; in-house lighting, 150 lx and street lighting, 7.5 lx) and contrast (90%, 70%, 50% and 30%) on the near visual acuity (VA) of older adults (n= 38, 65-87 years). VA was measured at a 1-m viewing distance using logarithm of minimum angle of resolution (LogMAR) acuity charts. Results from the study showed that for all contrast levels tested, VA decreased by 0.2 log units between the overcast and street lighting conditions. On average, in overcast conditions, participants could detect detail around 1.6 times smaller on the LogMAR charts compared with street lighting. VA also significantly decreased when contrast was reduced from 70% to 50%, and from 50% to 30% in each of the ambient illumination conditions. Practitioner summary: This article presents an experimental study that investigates the impact of everyday ambient illumination levels and contrast on older adults' VA. Results show that both factors have a significant effect on their VA. Findings suggest that environmental conditions need to be accounted for in older adult capability data-sets/designs.
Resumo:
We introduce a new image-based visual navigation algorithm that allows the Cartesian velocity of a robot to be defined with respect to a set of visually observed features corresponding to previously unseen and unmapped world points. The technique is well suited to mobile robot tasks such as moving along a road or flying over the ground. We describe the algorithm in general form and present detailed simulation results for an aerial robot scenario using a spherical camera and a wide angle perspective camera, and present experimental results for a mobile ground robot.
Resumo:
User interfaces for source code editing are a crucial component in any software development environment, and in many editors visual annotations (overlaid on the textual source code) are used to provide important contextual information to the programmer. This paper focuses on the real-time programming activity of ‘cyberphysical’ programming, and considers the type of visual annotations which may be helpful in this programming context.
Resumo:
This paper presents practical vision-based collision avoidance for objects approximating a single point feature. Using a spherical camera model, a visual predictive control scheme guides the aircraft around the object along a conical spiral trajectory. Visibility, state and control constraints are considered explicitly in the controller design by combining image and vehicle dynamics in the process model, and solving the nonlinear optimization problem over the resulting state space. Importantly, range is not required. Instead, the principles of conical spiral motion are used to design an objective function that simultaneously guides the aircraft along the avoidance trajectory, whilst providing an indication of the appropriate point to stop the spiral behaviour. Our approach is aimed at providing a potential solution to the See and Avoid problem for unmanned aircraft and is demonstrated through a series.
Resumo:
Stereo visual odometry has received little investigation in high altitude applications due to the generally poor performance of rigid stereo rigs at extremely small baseline-to-depth ratios. Without additional sensing, metric scale is considered lost and odometry is seen as effective only for monocular perspectives. This paper presents a novel modification to stereo based visual odometry that allows accurate, metric pose estimation from high altitudes, even in the presence of poor calibration and without additional sensor inputs. By relaxing the (typically fixed) stereo transform during bundle adjustment and reducing the dependence on the fixed geometry for triangulation, metrically scaled visual odometry can be obtained in situations where high altitude and structural deformation from vibration would cause traditional algorithms to fail. This is achieved through the use of a novel constrained bundle adjustment routine and accurately scaled pose initializer. We present visual odometry results demonstrating the technique on a short-baseline stereo pair inside a fixed-wing UAV flying at significant height (~30-100m).
Resumo:
Achieving a robust, accurately scaled pose estimate in long-range stereo presents significant challenges. For large scene depths, triangulation from a single stereo pair is inadequate and noisy. Additionally, vibration and flexible rigs in airborne applications mean accurate calibrations are often compromised. This paper presents a technique for accurately initializing a long-range stereo VO algorithm at large scene depth, with accurate scale, without explicitly computing structure from rigidly fixed camera pairs. By performing a monocular pose estimate over a window of frames from a single camera, followed by adding the secondary camera frames in a modified bundle adjustment, an accurate, metrically scaled pose estimate can be found. To achieve this the scale of the stereo pair is included in the optimization as an additional parameter. Results are presented both on simulated and field gathered data from a fixed-wing UAV flying at significant altitude, where the epipolar geometry is inaccurate due to structural deformation and triangulation from a single pair is insufficient. Comparisons are made with more conventional VO techniques where the scale is not explicitly optimized, and demonstrated over repeated trials to indicate robustness.
Resumo:
This thesis presents novel vision based control solutions that enable fixed-wing Unmanned Aerial Vehicles to perform tasks of inspection over infrastructure including power lines, pipe lines and roads. This is achieved through the development of techniques that combine visual servoing with alternate manoeuvres that assist the UAV in both following and observing the feature from a downward facing camera. Control designs are developed through techniques of Image Based Visual Servoing to utilise sideslip through Skid-to-Turn and Forward-Slip manoeuvres. This allows the UAV to simultaneously track and collect data over the length of infrastructure, including straight segments and the transition where these meet.
Resumo:
The performance of visual speech recognition (VSR) systems are significantly influenced by the accuracy of the visual front-end. The current state-of-the-art VSR systems use off-the-shelf face detectors such as Viola- Jones (VJ) which has limited reliability for changes in illumination and head poses. For a VSR system to perform well under these conditions, an accurate visual front end is required. This is an important problem to be solved in many practical implementations of audio visual speech recognition systems, for example in automotive environments for an efficient human-vehicle computer interface. In this paper, we re-examine the current state-of-the-art VSR by comparing off-the-shelf face detectors with the recently developed Fourier Lucas-Kanade (FLK) image alignment technique. A variety of image alignment and visual speech recognition experiments are performed on a clean dataset as well as with a challenging automotive audio-visual speech dataset. Our results indicate that the FLK image alignment technique can significantly outperform off-the shelf face detectors, but requires frequent fine-tuning.
Resumo:
Maternally inherited diabetes and deafness (MIDD) is an autosomal dominant inherited syndrome caused by the mitochondrial DNA (mtDNA) nucleotide mutation A3243G. It affects various organs including the eye with external ophthalmoparesis, ptosis, and bilateral macular pattern dystrophy.1, 2 The prevalence of retinal involvement in MIDD is high, with 50% to 85% of patients exhibiting some macular changes.1 Those changes, however, can vary between patients and within families dramatically based on the percentage of retinal mtDNA mutations, making it difficult to give predictions on an individual’s visual prognosis...
Resumo:
Extrapulmonary small cell and small cell neuroendocrine tumors of unknown primary site are, in general, aggressive neoplasms with a short median survival. Like small cell lung cancer (SCLC), they often are responsive to chemotherapy and radiotherapy. Small cell lung cancer and well differentiated neuroendocrine carcinomas of the gastrointestinal tract and pancreas tend to express somatostatin receptors. These tumors may be localized in patients by scintigraphic imaging using radiolabeled somatostatin analogues. A patient with an anaplastic neuroendocrine small cell tumor arising on a background of multiple endocrine neoplasia type 1 syndrome is reported. The patient had a known large pancreatic gastrinoma and previously treated parathyroid adenopathy. At presentation, there was small cell cancer throughout the liver and skeleton. Imaging with a radiolabeled somatostatin analogue, 111In- pentetreotide (Mallinckrodt Medical B. V., Petten, Holland), revealed all sites of disease detected by routine biochemical and radiologic methods. After six cycles of chemotherapy with doxorubicin, cyclophosphamide, and etoposide, there was almost complete clearance of the metastatic disease. 111In-pentetreotide scintigraphy revealed uptake consistent with small areas of residual disease in the liver, the abdomen (in mesenteric lymph nodes), and posterior thorax (in a rib). The primary gastrinoma present before the onset of the anaplastic small cell cancer showed no evidence of response to the treatment. The patient remained well for 1 year and then relapsed with brain, lung, liver, and skeletal metastases. Despite an initial response to salvage radiotherapy and chemotherapy with carboplatin and dacarbazine, the patient died 6 months later.