253 resultados para CNF-monolith
Resumo:
Polydisperse, functionalized, chemically converted graphene (f-CCG) nanosheets, which can be homogeneously distributed into water, ethanol, DMF, DMSO and 3-aminopropyltriethoxysilane (APTS), were obtained via facile covalent functionalization with APTS. The resulting f-CCG nanosheets were characterized by FTIR, XPS, TGA, EDX, AFM, SEM, and TEM. Furthermore, the f-CCG nanosheets as reinforcing components were extended into silica monoliths. Compressive tests revealed that the compressive failure strength and the toughness of f-CCG-reinforced APTS monoliths at 0.1 wt% functionalized, chemically converted graphene sheets compared with the neat APTS monolith were greatly improved by 19.9% and 92%, respectively.
Resumo:
中国科学院山西煤炭化学研究所
Resumo:
Transparent organic-inorganic hybrid monoliths containing rare-earth complexes (Eu(TTA)(3)Phen, Tb(Sal)(3)) were prepared via the sol-gel technique. It could be observed by transmission electron microscopy that the fluorescent particles are distributed in the matrix at the microscopic level. The matrix is composed of organic-inorganic semiinterpenetrating networks, i.e., PHEMA-SiO2 system. The fluorescence emission spectra of samples are similar to those from corresponding powdered Eu(III) and Tb(III) complexes, and the half-widths of the strongest bands are less than 10 nm, which indicates that the monolith exhibits high fluorescence intensity and color purity. Furthermore, the fluorescence spectra exhibit no obvious change with decreasing nanoparticle size of the rare-earth complex. The fluorescence lifetimes of samples are longer than pure Eu(III), Tb(III) complexes, respectively. Samples irradiated with an UV lamp (365 nm) are still transparent but become bright red and green in color due to fluorescence of Eu(III) and Tb(III) complexes. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
Rock mass is widely recognized as a kind of geologic body which consists of rock blocks and discontinuities. The deformation and failure of rock mass is not only determined by rock block,but also by discontinuity which is virtually more important. Mutual cutting and combination of discontinuities controlled mechanical property of rock mass. The complex cutting of discontinuities determine the intense anisotropy on mechanical property of rock mass,especially under the effect of ground stress. Engineering practice has show that the brittle failure of hard rock always occurs when its working stress is far lower than the yield strength and compressive strength,the failure always directly related to the fracture propagation of discontinuities. Fracture propagation of discontinuities is the virtue of hard rock’s failure. We can research the rock mass discontinuous mechanical properties precisely by the methods of statistical analysis of discontinuities and Fracture Mechanics. According to Superposition Principle in Fracture Mechanics,A Problem or C Problem could be chosen to research. Problem A mainly calculates the crack-tip stress field and displacement field on internal discontinuities by numerical method. Problem C calculate the crack-tip stress field and displacement field under the assumption of that the mainly rock mass stress field has been known. So the Problem C avoid the complex mutual interference of stress fields of discontinuities,which is called crack system problem in Fracture Mechanics. To solve Problem C, field test on stress field in the rock mass is needed. The linear Superposition of discontinuities strain energies are Scientific and Rational. The difference of Fracture Mechanics between rock mass and other materials can mostly expression as:other materials Fracture Mechanics mostly face the problem A,and can’t avoid multi-crack puzzle, while the Rock mass Fracture Mechanics answer to the Problem C. Problem C can avoid multi-discontinuities mutual interference puzzle via the ground stress test. On the basis of Problem C, Fracture Mechanics could be used conveniently in rock mass. The rock mass statistics fracture constitutive relations, which introduced in this article, are based on the Problem C and the Discontinuity Strain Energy linear superposition. This constitutive relation has several merits: first, it is physical constitutive relation rather than empirical; second, it is very fit to describe the rock mass anisotropy properties; third, it elaborates the exogenous factors such as ground stress. The rock mass statistics fracture constitutive relation is the available approach to answer to the physical, anisotropic and ground stress impacted rock mass problems. This article stand on the foundation of predecessor’s statistics fractures constitutive relation, and improved the discontinuity distributive function. This article had derived the limitation of negative exponential distribution in the course of regression analysis, and advocated to using the two parameter negative exponential distribution for instead. In order to solve the problems of two-dimension stability on engineering key cross-sectional view in rock mass, this article derived the rock mass planar flexibility tensor, and established rock mass two-dimension penetrate statistics fracture constitutive relation on the basis of penetrate fracture mechanics. Based on the crack tip plasticity research production of penetrate fracture, for example the Irwin plasticity equifinality crack, this article established the way to deal with the discontinuity stress singularity and plastic yielding problem at discontinuity tip. The research on deformation parameters is always the high light region of rock mass mechanics field. After the dam foundation excavation of XiaoWan hydroelectric power station, dam foundation rock mass upgrowthed a great deal of unload cracks, rock mass mechanical property gotten intricacy and strong anisotropy. The dam foundation rock mass mostly upgrowthed three group discontinuities: the decantation discontinuity, the steep pitch discontinuity, and the schistosity plane. Most of the discontinuities have got partial unload looseness. In accordance with ground stress field data, the dam foundation stress field greatly non-uniform, which felled under the great impaction of tectonic stress field, self-weight stress field, excavation geometric boundary condition, and excavation, unload. The discontinuity complexity and stress field heterogeneity, created the rock mass mechanical property of dam foundation intricacy and levity. The research on the rock mass mechanics, if not take every respected influencing factor into consideration as best as we can, major errors likely to be created. This article calculated the rock mass elastic modulus that after Xiao Wan hydroelectric power station dam foundation gutter excavation finished. The calculation region covered possession monolith of Xiao Wan concrete double-curvature arch dam. Different monolith were adopted the penetrate fracture statistics constitutive relation or bury fracture statistics constitutive relation selectively. Statistics fracture constitutive relation is fit for the intensity anisotropy and heterogeneity rock mass of Xiao Wan hydroelectric power station dam foundation. This article had contrastive analysis the statistics fracture constitutive relation result with the inclined plane load test actual measurement elastic modulus and RMR method estimated elastic modulus, and find that the three methods elastic modulus have got greatly comparability. So, the statistics fracture constitutive relations are qualified for trust. Generally speaking,this article had finished following works based on predecessors job: “Argumentation the C Problems of superposition principle in Fracture Mechanics, establish two-dimension penetrate statistics fracture constitutive relation of rock mass, argue the negative exponential distribution limitation and improve it, improve of the three-dimension berry statistics fracture constitutive relation of rock mass, discontinuity-tip plastic zone isoeffect calculation, calculate the rock mass elastic modulus on two-dimension cross-sectional view”. The whole research clue of this article inherited from the “statistics rock mass mechanics” of Wu Faquan(1992).
Resumo:
ZSM-5 zeolites were synthesized in situ onto cordierite honeycombs by vapor phase transport (VPT) for the first time. The as-synthesized ZSM-5/cordierite honeycombs were impregnated with IrCl3 and tested for NOx reduction with a simulated exhaust gas as the reducing agent. Under the conditions of excess oxygen, the Ir/ZSM-S/cordierite monolith catalyst exhibited NO reduction of 73% at a temperature of 573 K and a space velocity of 20,000 h(-1).
Resumo:
The catalytic performance of Ir-based catalysts was investigated for the reduction of NO under lean-burn conditions over binderless Ir/ZSM-5 monoliths, which were prepared by a vapor phase transport (VPT) technique. The catalytic activity was found to be dependent not only on the Ir content, but also on the ZSM-5 loading of the monolith. With the decreasing of the Ir content or the increasing of the ZSM-5 loading of the monolith, NO conversion increased. When the ZSM-5 loading on the cordierite monolith was raised up to ca. 11% and the metal Ir content was about 5 g/l, the NO conversion reached its maximum value of 73% at 533 K and SV of 20 000 h(-1). Furthermore, both the presence of 10% water vapor in the feed gas and the variation of space velocity of the reaction gases have little effect on the NO conversion. A comparative test between Ir/ZSM-5 and Cu/ZSM-5, as well as the variation of the feed gas compositions, revealed that Ir/ZSM-5 is very active for the reduction of NO by CO under lean conditions, although it is a poor catalyst for the C3H8-SCR process. This unique property of Ir/ZSM-5 makes it superior to the traditional three-way catalyst (TWC) for NO reduction under lean conditions. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
A monolithic silica based strong cation-exchange stationary phase was successfully prepared for capillary electrochromatography. The monolithic silica matrix from a sol-gel process was chemically modified by treatment with 3-mercaptopropyltrimethoxysilane followed by a chemical oxidation procedure to produce the desired function. The strong cation-exchange stationary phase was characterized by its substantial and stable electroosmotic flow (EOF), and it was observed that the EOF value of the prepared column remained almost unchanged at different buffer pH values and slowly decreased with increasing phosphate concentration in the mobile phase. The monolithic silica column with strong cation-exchange stationary phase has been successfully employed in the electrochromatographic separation of beta-blockers and alkaloids extracted from traditional Chinese medicines (TCMs). The column efficiencies for the tested beta-blockers varied from 210,000 to 340,000 plates/m. A peak compression effect was observed for atenolol with the mobile phase having a low phosphate concentration.
Resumo:
Mighall, T. Abrahams, P. Grattan, J. Hayes, D. Timberlake, S. Forsyth, S. Geochemical evidence for atmospheric pollution derived from prehistoric copper mining at Copa Hill, Cwmystwyth, mid-Wales, UK. The Science of the Total Environment. 2002. 292 pp 69-80
Resumo:
Transport protocols are an integral part of the inter-process communication (IPC) service used by application processes to communicate over the network infrastructure. With almost 30 years of research on transport, one would have hoped that we have a good handle on the problem. Unfortunately, that is not true. As the Internet continues to grow, new network technologies and new applications continue to emerge putting transport protocols in a never-ending flux as they are continuously adapted for these new environments. In this work, we propose a clean-slate transport architecture that renders all possible transport solutions as simply combinations of policies instantiated on a single common structure. We identify a minimal set of mechanisms that once instantiated with the appropriate policies allows any transport solution to be realized. Given our proposed architecture, we contend that there are no more transport protocols to design—only policies to specify. We implement our transport architecture in a declarative language, Network Datalog (NDlog), making the specification of different transport policies easy, compact, reusable, dynamically configurable and potentially verifiable. In NDlog, transport state is represented as database relations, state is updated/queried using database operations, and transport policies are specified using declarative rules. We identify limitations with NDlog that could potentially threaten the correctness of our specification. We propose several language extensions to NDlog that would significantly improve the programmability of transport policies.
Resumo:
The study is a cross-linguistic, cross-sectional investigation of the impact of learning contexts on the acquisition of sociopragmatic variation patterns and the subsequent enactment of compound identities. The informants are 20 non-native speaker teachers of English from a range of 10 European countries. They are all primarily mono-contextual foreign language learners/users of English: however, they differ with respect to the length of time accumulated in a target language environment. This allows for three groups to be established – those who have accumulated 60 days or less; those with between 90 days and one year and the final group, all of whom have accumulated in excess of one year. In order to foster the dismantling of the monolith of learning context, both learning contexts under consideration – i.e. the foreign language context and submersion context are broken down into micro-contexts which I refer to as loci of learning. For the purpose of this study, two loci are considered: the institutional and the conversational locus. In order to make a correlation between the impact of learning contexts and loci of learning on the acquisition of sociopragmatic variation patterns, a two-fold study is conducted. The first stage is the completion of a highly detailed language contact profile (LCP) questionnaire. This provides extensive biographical information regarding language learning history and is a powerful tool in illuminating the intensity of contact with the L2 that learners experience in both contexts as well as shedding light on the loci of learning to which learners are exposed in both contexts. Following the completion of the LCP, the informants take part in two role plays which require the enactment of differential identities when engaged in a speech event of asking for advice. The enactment of identities then undergoes a strategic and linguistic analysis in order to investigate if and how differences in the enactment of compound identities are indexed in language. Results indicate that learning context has a considerable impact not only on how identity is indexed in language, but also on the nature of identities enacted. Informants with very low levels of crosscontextuality index identity through strategic means – i.e. levels of directness and conventionality; however greater degrees of cross-contextuality give rise to the indexing of differential identities linguistically by means of speaker/hearer orientation and (non-) solidary moves. When it comes to the nature of identity enacted, it seems that more time spent in intense contact with native speakers in a range of loci of learning allows learners to enact their core identity; whereas low levels of contact with over-exposure to the institutional locus of learning fosters the enactment of generic identities.
Resumo:
The work presented in this thesis described the development of low-cost sensing and separation devices with electrochemical detections for health applications. This research employs macro, micro and nano technology. The first sensing device developed was a tonerbased micro-device. The initial development of microfluidic devices was based on glass or quartz devices that are often expensive to fabricate; however, the introduction of new types of materials, such as plastics, offered a new way for fast prototyping and the development of disposable devices. One such microfluidic device is based on the lamination of laser-printed polyester films using a computer, printer and laminator. The resulting toner-based microchips demonstrated a potential viability for chemical assays, coupled with several detection methods, particularly Chip-Electrophoresis-Chemiluminescence (CE-CL) detection which has never been reported in the literature. Following on from the toner-based microchip, a three-electrode micro-configuration was developed on acetate substrate. This is the first time that a micro-electrode configuration made from gold; silver and platinum have been fabricated onto acetate by means of patterning and deposition techniques using the central fabrication facilities in Tyndall National Institute. These electrodes have been designed to facilitate the integration of a 3- electrode configuration as part of the fabrication process. Since the electrodes are on acetate the dicing step can automatically be eliminated. The stability of these sensors has been investigated using electrochemical techniques with excellent outcomes. Following on from the generalised testing of the electrodes these sensors were then coupled with capillary electrophoresis. The final sensing devices were on a macro scale and involved the modifications of screenprinted electrodes. Screen-printed electrodes (SPE) are generally seen to be far less sensitive than the more expensive electrodes including the gold, boron-doped diamond and glassy carbon electrodes. To enhance the sensitivity of these electrodes they were treated with metal nano-particles, gold and palladium. Following on from this, another modification was introduced. The carbonaceous material carbon monolith was drop-cast onto the SPE and then the metal nano-particles were electrodeposited onto the monolith material
Resumo:
This paper describes a model of a 1.8-litre four-cylinder four-stroke gasoline engine fitted with a close-coupled three-way catalyst (TWC). Designed to meet EURO 3 emissions standards, the engine includes some advanced emission control features in addition to the TWC, namely: variable valve timing (VVT), swirl control plates, and exhaust gas recirculation (EGR). Gas flow is treated as one-dimensional (1D) and unsteady in the engine ducting and in the catalyst. Reflection and transmission of pressure waves at the boundaries of the catalyst monolith are modelled. In-cylinder combustion is represented by a two-zone burn model with dissociation and reaction kinetics. A single Wiebe analysis of measured in-cylinder pressure data is used to determine the mass fraction burned as a function of crank angle (CA) at each engine speed. Measured data from steady-state dynamometer tests are presented for operation at wide open throttle (WOT) over a range of engine speeds. These results include CA-resolved traces of pressure at various locations throughout the engine together with cycle-averaged traces of gas composition entering the catalyst as indicated by a fast-response emissions analyser. Simulated engine performance and pressure wave action throughout the engine are well validated by the measured data.
Resumo:
In 2003, the remains of an Early Iron Age bog body, known as ‘Oldcroghan Man’, were recovered during the cutting of a drainage ditch in a bog in the Irish Midlands. Only some fingernails and a withe fragment remained undisturbed in situ in the drain face, providing the sole evidence for the original position of the body. A detailed reconstruction of the depositional context of the body has been undertaken through multi-proxy analyses of a peat monolith collected at the findspot. The palynological record shows that the surrounding area was the focus of intensive human activity during the Later Bronze Age, but was largely abandoned during the Bronze Age–Iron transition in the mid-first millennium BC. In the mid-4th century BC, a bog pool developed at the site, evidenced in the stratigraphic, plant macrofossil, testate amoebae and coleopteran records. Plant macrofossil and pollen analysis of peat samples associated with the fingernails suggests that the body was deposited in this pool most likely during the 3rd century BC. The absence of carrion beetle fauna points to complete submergence of the body within the pool. Deposition occurred shortly before or around the time that the surrounding area again became the focus of woodland clearance, as seen in the extended pollen record from the peat monolith. This period corresponds to the Early Iron Age in Ireland, during which renewed cultural connections with Britain and continental Europe can be seen in the archaeological record and widespread forest clearance is recorded in pollen records from across Ireland. The palaeoenvironmental results indicate, therefore, that the demise of Oldcroghan Man took place at a pivotal time of socio-economic and perhaps political change.
Resumo:
Monolithic catalysts are widely used as structured catalysts, especially in the abatement of pollutants. Probing what happens inside these monoliths during operation is, therefore, vital for modelling and prediction of the catalyst behavior. SpaciMS is a spatially resolved capillary-inlet mass spectroscopy system allowing for the generation of spatially resolved maps of the reactions within monoliths. In this study SpaciMS results combined with 3D CFD modelling demonstrate that SpaciMS is a highly sensitive and minimally invasive technique that can provide reaction maps as well as catalytic temporal behavior. Herein we illustrate this by examining kinetic oscillations during a CO oxidation reaction over a Pt/Rh on alumina catalyst supported on a cordierite monolith. These oscillations were only observed within the monolith by SpaciMS between 30 and 90% CO conversion. Equivalent experiments performed in a plug-flow reactor using this catalyst in a crushed form over a similar range of reaction conditions did not display any oscillations demonstrating the importance of intra monolith analysis. This work demonstrates that the SpaciMS offers an accurate and comprehensive picture of structured catalysts under operation.