740 resultados para CHOLINE-DEFICIENT DIET
Resumo:
The objective of the present study was to assess the effects of the immunosuppressant rapamycin (Rapamune®, Sirolimus) on both resistance vessel responsiveness and atherosclerosis in apolipoprotein E-deficient 8-week-old male mice fed a normal rodent diet. Norepinephrine (NE)-induced vasoconstriction, acetylcholine (ACh)- and sodium nitroprusside (SNP)-induced vasorelaxation of isolated mesenteric bed, and atherosclerotic lesions were evaluated. After 12 weeks of orally administered rapamycin (5 mg·kg-1·day-1, N = 9) and compared with untreated (control, N = 9) animals, rapamycin treatment did not modify either NE-induced vasoconstriction (maximal response: 114 ± 4 vs 124 ± 10 mmHg, respectively) or ACh- (maximal response: 51 ± 8 vs 53 ± 5%, respectively) and SNP-induced vasorelaxation (maximal response: 73 ± 6 vs 74 ± 6%, respectively) of the isolated vascular mesenteric bed. Despite increased total cholesterol in treated mice (982 ± 59 vs 722 ± 49 mg/dL, P < 0.01), lipid deposition on the aorta wall vessel was significantly less in rapamycin-treated animals (37 ± 12 vs 68 ± 8 µm2 x 103). These results indicate that orally administered rapamycin is effective in attenuating the progression of atherosclerotic plaque without affecting the responsiveness of resistance vessels, supporting the idea that this immunosuppressant agent might be of potential benefit against atherosclerosis in patients undergoing therapy.
Resumo:
Schistosoma mansoni infected C57Bl/6 inducible nitric oxide synthase (iNOS)-deficient and non-deficient malnourished mice, both fed a balanced controlled diet were studied. Interleukins, IL-4 and IL-10 responses to soluble egg antigens (SEA) 90 days after infection, were determined. Our results suggest that in iNOS deficient, malnourished mice, 90 days after of infection, nitric oxide has a downregulating effect on IL-4 and IL-10 production. We are currently investigating the biological significance of these findings.
Resumo:
Dyslipidemia is a known risk factor for cardiovascular diseases and may associate with renal injury. Using mouse models with various degrees of hypercholesterolemia and hypertryliceridemia, we investigated the effects of lipids on the renin-angiotensin system (RAS). ApoE-/- mice were fed either a high fat diet (HF-ApoE-/-; mice developed hypertriglyceridemia and severe hypercholesterolemia) or regular chow (R-ApoE(-/-); mice developed less severe hypercholesterolemia only). Renal histopathology in the HF-ApoE-/- revealed massive lipid accumulation especially at the glomerular vascular pole. In these mice plasma renin concentration was significantly reduced (489+/-111 ng/(ml h) versus 1023+/-90 ng/(ml h) in R-ApoE-/- mice) and blood pressure was consequently significantly lower than in R-ApoE-/- (104+/-2 mmHg versus 115+/-2 mmHg, respectively). A model of renin-dependent renovascular hypertension (two-kidney, one clip) was generated and HF-ApoE-/- mice proved unable to increase renin secretion, and blood pressure, in response to diminished renal perfusion as compared to regular chow fed mice (665+/-90 ng/(ml h) versus 2393+/-372 ng/(ml h), respectively and 106+/-3 mmHg versus 140+/-2 mmHg, respectively). Hypertriglyceridemia and severe hypercholesterolemia are associated with renal lipid deposition and impaired renin secretion in ApoE-/- mice exposed to high fat diet. These observations further characterize the phenotype of this widely used mouse model and provide a rationale for the use of these mice to study lipid induced organ damage.
Resumo:
BACKGROUND: In chronic kidney disease (CKD) patients, the intake of calcium-based phosphate binders is associated with a marked progression of coronary artery and aortic calcification, in contrast to patients receiving calcium-free phosphate binders. The aim of this study was to reexamine the role of calcium carbonate in vascular calcification and to analyse its effect on aortic calcification-related gene expression in chronic renal failure (CRF). METHODS: Mice deficient in apolipoprotein E underwent either sham operation or subtotal nephrectomy to create CRF. They were then randomly assigned to one of the three following groups: a control non-CRF group and a CRF group fed on standard diet, and a CRF group fed on calcium carbonate enriched diet, for a period of 8 weeks. Aortic atherosclerotic plaque and calcification were evaluated using quantitative morphologic image processing. Aortic gene and protein expression was examined using immunohistochemistry and Q-PCR methods. RESULTS: Calcium carbonate supplementation was effective in decreasing serum phosphorus but was associated with a higher serum calcium concentration. Compared with standard diet, calcium carbonate enriched diet unexpectedly induced a significant decrease of both plaque (p<0.05) and non-plaque-associated calcification surface (p<0.05) in CRF mice. It also increased osteopontin (OPN) protein expression in atherosclerotic lesion areas of aortic root. There was also a numerical increase in OPN and osteoprotegerin gene expression in total thoracic aorta but the difference did not reach the level of significance. Finally, calcium carbonate did not change the severity of atherosclerotic lesions. CONCLUSION: In this experimental model of CRF, calcium carbonate supplementation did not accelerate but instead decreased vascular calcification. If our observation can be extrapolated to humans, it appears to question the contention that calcium carbonate supplementation, at least when given in moderate amounts, necessarily enhances vascular calcification. It is also compatible with the hypothesis of a preponderant role of phosphorus over that of calcium in promoting vascular calcification in CRF.
Resumo:
The interleukin-1 (IL-1) family of cytokines has been implicated in the pathogenesis of atherosclerosis in previous studies. The NLRP3 inflammasome has recently emerged as a pivotal regulator of IL-1β maturation and secretion by macrophages. Little is currently known about a possible role for the NLRP3 inflammasome in atherosclerosis progression in vivo. We generated ApoE-/- Nlrp3-/-, ApoE-/- Asc-/- and ApoE-/- caspase-1-/- double-deficient mice, fed them a high-fat diet for 11 weeks and subsequently assessed atherosclerosis progression and plaque phenotype. No differences in atherosclerosis progression, infiltration of plaques by macrophages, nor plaque stability and phenotype across the genotypes studied were found. Our results demonstrate that the NLRP3 inflammasome is not critically implicated in atherosclerosis progression in the ApoE mouse model.
Resumo:
Apart from its role during labor and lactation, oxytocin is involved in several other functions. Interestingly, oxytocin- and oxytocin receptor-deficient mice develop late-onset obesity with normal food intake, suggesting that the hormone might exert a series of beneficial metabolic effects. This was recently confirmed by data showing that central oxytocin infusion causes weight loss in diet-induced obese mice. The aim of the present study was to unravel the mechanisms underlying such beneficial effects of oxytocin. Chronic central oxytocin infusion was carried out in high fat diet-induced obese rats. Its impact on body weight, lipid metabolism and insulin sensitivity was determined. We observed a dose-dependent decrease in body weight gain, increased adipose tissue lipolysis and fatty acid β-oxidation, as well as reduced glucose intolerance and insulin resistance. The additional observation that plasma oxytocin levels increased upon central infusion suggested that the hormone might affect adipose tissue metabolism by direct action. This was demonstrated using in vitro, ex vivo, as well as in vivo experiments. With regard to its mechanism of action in adipose tissue, oxytocin increased the expression of stearoyl-coenzyme A desaturase 1, as well as the tissue content of the phospholipid precursor, N-oleoyl-phosphatidylethanolamine, the biosynthetic precursor of the oleic acid-derived PPAR-alpha activator, oleoylethanolamide. Because PPAR-alpha regulates fatty acid β-oxidation, we hypothesized that this transcription factor might mediate the oxytocin effects. This was substantiated by the observation that, in contrast to its effects in wild-type mice, oxytocin infusion failed to induce weight loss and fat oxidation in PPAR-alpha-deficient animals. Altogether, these results suggest that oxytocin administration could represent a promising therapeutic approach for the treatment of human obesity and type 2 diabetes.
Resumo:
Nedd4-2 has been proposed to play a critical role in regulating epithelial Na+ channel (ENaC) activity. Biochemical and overexpression experiments suggest that Nedd4-2 binds to the PY motifs of ENaC subunits via its WW domains, ubiquitinates them, and decreases their expression on the apical membrane. Phosphorylation of Nedd4-2 (for example by Sgk1) may regulate its binding to ENaC, and thus ENaC ubiquitination. These results suggest that the interaction between Nedd4-2 and ENaC may play a crucial role in Na+ homeostasis and blood pressure (BP) regulation. To test these predictions in vivo, we generated Nedd4-2 null mice. The knockout mice had higher BP on a normal diet and a further increase in BP when on a high-salt diet. The hypertension was probably mediated by ENaC overactivity because 1) Nedd4-2 null mice had higher expression levels of all three ENaC subunits in kidney, but not of other Na+ transporters; 2) the downregulation of ENaC function in colon was impaired; and 3) NaCl-sensitive hypertension was substantially reduced in the presence of amiloride, a specific inhibitor of ENaC. Nedd4-2 null mice on a chronic high-salt diet showed cardiac hypertrophy and markedly depressed cardiac function. Overall, our results demonstrate that in vivo Nedd4-2 is a critical regulator of ENaC activity and BP. The absence of this gene is sufficient to produce salt-sensitive hypertension. This model provides an opportunity to further investigate mechanisms and consequences of this common disorder.
Resumo:
The objective of this work was to compare biological aspects and life table parameters of the coccinellids Harmonia axyridis, Cycloneda sanguineaand Hippodamia convergens. Insects were fed eggs of Anagasta kuehniella, and reared at 24.5±1ºC, 70±10% relative humidity, with a 12 hour photophase. Hippodamia convergenstook about 1.6 day to complete development, longer than H. axyridis, and 2.4 day longer than C. sanguinea.At immature stages, H. axyridisexhibited the highest survival percentage (49.2%), in comparison to the other coccinellids. For mean adult longevity, H. convergenswas deficient, in comparison with the other species. Mean period of pre oviposition was the longest in C. sanguinea; the longest oviposition time occurred for H. axyridis; and the post oviposition period was similar between the coccinellids. Considering the reproductive parameters, H. axyridisshowed the best performance in all aspects. For life table, the values of H. convergenswere higher than, although close, to those of H. axyridis. Nevertheless, the high net reproductive rate of H. axyridis showed this species potential to increase population size. The biological characteristics of the exotic H. axyridis favors its invasion and establishment in Brazil, corroborating results noticed in other countries.
Resumo:
The objective of the present study was to assess the effects of the immunosuppressant rapamycin (Rapamune®, Sirolimus) on both resistance vessel responsiveness and atherosclerosis in apolipoprotein E-deficient 8-week-old male mice fed a normal rodent diet. Norepinephrine (NE)-induced vasoconstriction, acetylcholine (ACh)- and sodium nitroprusside (SNP)-induced vasorelaxation of isolated mesenteric bed, and atherosclerotic lesions were evaluated. After 12 weeks of orally administered rapamycin (5 mg·kg-1·day-1, N = 9) and compared with untreated (control, N = 9) animals, rapamycin treatment did not modify either NE-induced vasoconstriction (maximal response: 114 ± 4 vs 124 ± 10 mmHg, respectively) or ACh- (maximal response: 51 ± 8 vs 53 ± 5%, respectively) and SNP-induced vasorelaxation (maximal response: 73 ± 6 vs 74 ± 6%, respectively) of the isolated vascular mesenteric bed. Despite increased total cholesterol in treated mice (982 ± 59 vs 722 ± 49 mg/dL, P < 0.01), lipid deposition on the aorta wall vessel was significantly less in rapamycin-treated animals (37 ± 12 vs 68 ± 8 µm² x 10³). These results indicate that orally administered rapamycin is effective in attenuating the progression of atherosclerotic plaque without affecting the responsiveness of resistance vessels, supporting the idea that this immunosuppressant agent might be of potential benefit against atherosclerosis in patients undergoing therapy.
Resumo:
Pequi is the fruit of Caryocar brasiliense and its oil has a high concentration of monounsaturated and saturated fatty acids, which are anti- and pro-atherogenic agents, respectively, and of carotenoids, which give it antioxidant properties. Our objective was to study the effect of the intake of a cholesterol-rich diet supplemented with pequi oil, compared to the same diet containing soybean oil, on atherosclerosis development, and oxidative stress in atherosclerosis-susceptible LDL receptor-deficient mice (LDLr-/-, C57BL/6-background). Female mice were fed a cholesterol-rich diet containing 7% soybean oil (Soybean group, N = 12) or 7% pequi oil (Pequi group, N = 12) for 6 weeks. The Pequi group presented a more atherogenic lipid profile and more advanced atherosclerotic lesions in the aortic root compared to the Soybean group. However, the Pequi group presented a less advanced lesion in the aorta than the Soybean group and showed lower lipid peroxidation (Soybean group: 50.2 ± 7.1; Pequi group: 30.0 ± 4.8 µmol MDA/mg protein) and anti-oxidized LDL autoantibodies (Soybean group: 35.7 ± 9.4; Pequi group: 15.6 ± 3.7 arbitrary units). Peritoneal macrophages from the Pequi group stimulated with zymosan showed a reduction in the release of reactive oxygen species compared to the Soybean group. Our data suggest that a pequi oil-rich diet slows atherogenesis in the initial stages, possibly due to its antioxidant activity. However, the increase of serum cholesterol induces a more prominent LDL migration toward the intimae of arteries, increasing the advanced atherosclerotic plaque. In conclusion, pequi oil associated with an atherogenic diet worsens the lipid profile and accelerates the formation of advanced atherosclerotic lesions despite its antioxidant action.
Resumo:
Les oxydants infusés avec la nutrition parentéral (NP) néonatale induisent une modification du métabolisme des lipides et du glucose, donnant lieu à l’âge adulte à un phénotype de carence énergétique (faible poids, baisse de l’activité physique). L’hypothèse qu’une diète précoce riche en glucose prévient ces symptômes plus tard dans la vie, fut évalué chez le cobaye par un ANOVA en plan factoriel complet à deux facteurs (p < 0:05) : NP du jour 3 à 7, suivit d’une nourriture régulière (chow) (NP+) vs. chow à partir du 3ième jour (NP-), combiné avec une eau de consommation enrichie en glucose (G+) ou non (G-) à partir de la 3ième semaine. Les paramètres suivant ont été mesurés à l’âge de 9 semaine: taux de croissance, activité physique, activité de phosphofructokinase-1 et glucokinase (GK), niveau hépatique de glucose-6-phosphate (G6P), glycogène, pyruvate et potentiel redox du glutathion, poids du foie, glycémie, tolérance au glucose, concentrations hépatiques et plasmatiques en triacylglycérides (TG) et cholestérol. Le groupe G+ (vs. G-) avait un taux de croissance plus bas, une activité de GK et une concentration en G6P plus élevée, et un potentiel redox plus bas (moins oxydé). Le niveau plasmatique de TG était moins élevé dans le groupe NP+ (vs. NP-). Les traitements n’eurent aucun effet sur les autres paramètres. Ces résultats suggèrent qu’indépendamment de la NP, une alimentation riche en glucose stimule la glycolyse et déplace l’état redox vers un statut plus réduit, mais ne surmonte pas les effets de la NP sur le phénotype physique de carence énergétique.
Resumo:
Pvridoxine deficiency causes physiologically significant decrease in brain serotonin (5-HT) due to decreased decarboxylation of 5- hvdroxvtrvptophan (5-HTP). We have examined the effect of pyridoxine deficiency on indoleamine metabolism in the pineal gland, a tissue with high indoleamine turnover. Adult male Sprague-Dawley rats were fed either a pyridoxine-supplemented or pyridoxinedeficient diet for 8 weeks. Pyridoxine deficiency did not alter the pattern of circadian rhythm of pineal 5-HT. 5-hvdroxvindoleacetic acid (5-HIAA), V-acetvlserotonin (NAS). and melatonin. However the levels of these compounds were significantly lower in the pineal glands of pyridoxine-deficient animals. Pineal 5-HTP levels were consistently higher in the pyridoxine-deficient animals and a conspicuous increase was noticed at 22.00 h. Increase in pineal NAS and melatonin levels caused by isoproterenol (5 mg kg at 17.00 h) were significantly lower (P < 0.05) in the pyridoxine-deficient animals. Treatment of pyridoxine-deficient rats with pvridoxine restored the levels of pineal 5-HT, 5-HIAA. NAS. and melatonin to values seen in pyridoxine-supplemented control animals. These results suggest that 5-HT availability could be an important factor in the regulation of the synthesis of pineal NAS and melatonin.
Resumo:
The present study investigated the effect of feeding maize-oil, olive-oil and fish-oil diets, from weaning to adulthood, on rat mammary tissue and erythrocyte phospholipid fatty acid compositions. Effects of diet on the relative proportions of membrane phospholipids in the two tissues were also investigated. Mammary tissue phosphatidylinositol (PI) fatty acids were unaltered by diet, but differences in phosphatidylethanolamine (PE) and, to a lesser extent, phosphatidylcholine (PC) fractions were found between animals fed on different diets from weaning. Differences observed were those expected from the dietary fatty acids fed; n-6 fatty acids were found in greatest amounts in maize-oil-fed rats, n-9 in olive-oil-fed rats, and n-3 in fish-oil-fed rats. In erythrocytes the relative susceptibilities of the individual phospholipids to dietary modification were: PE > PC > PI, but enrichment with n-9 and n-3 fatty acids was not observed in olive-oil- and fish-oil-fed animals and in PC and PE significantly greater amounts of saturated fatty acids were found when animals fed on olive oil or fish oil were compared with maize-oil-fed animals. The polyunsaturated:saturated fatty acid ratios of PE and PC fractions were significantly lower in olive-oil- and fish-oil-fed animals. No differences in the relative proportions of phospholipid classes were found between the three dietary groups. It is suggested that differences in erythrocyte fatty acid composition may reflect dietary-induced changes in membrane cholesterol content and may form part of a homoeostatic response the aim of which is to maintain normal erythrocyte membrane fluidity. The resistance of mammary tissue PI fatty acids to dietary modification suggests that alteration of PI fatty acids is unlikely to underlie effects of dietary fat on mammary tumour incidence rates.
Resumo:
Ethanol can compromise the body mineral composition and affect bone, and when associated to hypogonadism is considered an important risk factor for osteoporosis in man. The aim of this study was to investigate the effect of androgen deficient and chronic ethanol consuming on mineral contents by biochemistry and non-destructive techniques. Wistar rat (n=54) were divided in orchiectomy (ORQ) or SHAM-operated and subdivided by diet. They were daily fed with a Lieber DeCarli diet model for 8 weeks long. The controls groups were free-diet and pair-fed. Ca and P were analyzed by biochemistry test in the blood and by nX-ray fluorescence and FT-Raman on the femur area. Serum analysis revealed hypocalcaemia and hypeiphosphataemia in ethanol groups more than pair-fed and free-diet. In similarity, spectroscopy indicated a decrease in bone Ca content in ORQ groups, mainly for ethanol groups. Phosphorus content and Ca/P molar ratio, otherwise, doesn't diverge in all 6 groups. Ethanol consumption impaired Ca and P homeostasis in ORQ rat more than SHAM. The relationships among ethanol consume and androgen deficit support the hypothesis that ethanol affects the mineral-regulating hormones and may mediate some effects on bone. These findings demonstrate that ethanol seemed to interfere with the normal compensatory response to these Ca and P levels and is more significant M androgen deficiency rats.
Resumo:
The purpose of this study was to examine in rats the histologic alterations of the submandibular glands and testicles induced by soy diets and zinc deficients diet. The zinc deficiency produced testicles alterations including seminiferous tubulus atrophy, germinative epithelium degeneration, spermatogenesis alterations and a significant atrophy of the submandibular glands which presented no much delimitated acines. The soy diet without complementations also compromised the spermatogenesis by showing seminiferous tubulus atrophied and a reduction of the germinative epithelium. The soy diet complemented by saline and vitaminic mixtures didn't produced testicles alterations but its induced in the submandibular glands a hypertrophy of the ductal component mainly in relation to the granular component.