964 resultados para Building-blocks
Resumo:
This work describes the synthesis in Solution of a series of related diketopiperazines with potential biological activities: cyclo(L-Pro-L-Ser), cyclo(L-Phe-L-Ser), cyclo(D-Phe-L-Ser) and the corresponding glycosylated analogs of the latter, cyclo[D-Phe-L-Ser(alpha GlcNAc)] and cyclo[D-Phe-L-Ser(beta GlcNAc)]. The synthetic approach involved coupling reactions of -OH or O-glycosylated serine benzyl esters with NFmoc-protected amino acids (Pro or Phe), followed by one-pot deprotection-cyclization reaction in the presence of 20% piperidine in DMF. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
This paper addresses the problem of ensuring compliance of business processes, implemented within and across organisational boundaries, with the constraints stated in related business contracts. In order to deal with the complexity of this problem we propose two solutions that allow for a systematic and increasingly automated support for addressing two specific compliance issues. One solution provides a set of guidelines for progressively transforming contract conditions into business processes that are consistent with contract conditions thus avoiding violation of the rules in contract. Another solution compares rules in business contracts and rules in business processes to check for possible inconsistencies. Both approaches rely on a computer interpretable representation of contract conditions that embodies contract semantics. This semantics is described in terms of a logic based formalism allowing for the description of obligations, prohibitions, permissions and violations conditions in contracts. This semantics was based on an analysis of typical building blocks of many commercial, financial and government contracts. The study proved that our contract formalism provides a good foundation for describing key types of conditions in contracts, and has also given several insights into valuable transformation techniques and formalisms needed to establish better alignment between these two, traditionally separate areas of research and endeavour. The study also revealed a number of new areas of research, some of which we intend to address in near future.
Resumo:
We report first-principles density-functional calculations for hydroquinone (HQ), indolequinone (IQ), and semiquinone (SQ). These molecules are believed to be the basic building blocks of the eumelanins, a class of biomacromolecules with important biological functions (including photoprotection) and with the potential for certain bioengineering applications. We have used the difference of self-consistent fields method to study the energy gap between the highest occupied molecular orbital and the lowest unoccupied molecular orbital, HL. We show that HL is similar in IQ and SQ, but approximately twice as large in HQ. This may have important implications for our understanding of the observed broadband optical absorption of the eumelanins. The possibility of using this difference in HL to molecularly engineer the electronic properties of eumelanins is discussed. We calculate the infrared and Raman spectra of the three redox forms from first principles. Each of the molecules have significantly different infrared and Raman signatures, and so these spectra could be used in situ to nondestructively identify the monomeric content of macromolecules. It is hoped that this may be a helpful analytical tool in determining the structure of eumelanin macromolecules and hence in helping to determine the structure-property-function relationships that control the behavior of the eumelanins.
Resumo:
Soil structure is generally defined as the arrangement, orientation, and organization of the primary particles of sand, silt, and clay into compound aggregates, which exhibit properties that are unequal to the properties of a mass of nonaggregated material with a similar texture.6 Therefore the nature of soil structure is that it conveys specific properties to the soil and any alteration, i.e., breakdown or structural development, to the soil structural units will affect the physical properties of the soil. The aggregation and organization of the soil particles tend to form a hierarchical order4, 5 where the lower orders tend to have higher densities and greater internal strength than the higher orders. A schematic diagram of the hierarchical nature of soil structural elements in a clay soil is given in Fig. 1.4 Clay particles tend to form domains (packets of parallel clay sheets, generally consisting of 5-7 sheets), in turn several domains form clusters, followed by several orders of clusters, micro- and macroaggregates. The hierarchical nature implies that the destruction of a lower order will result in the destruction of all higher hierarchical orders. An example is the dispersion of sodic clay domains which results in the destruction of all higher orders, resulting in a dense soil with low hydraulic conductivity. Hence the clay domains are the fundamental building blocks of the soil and its integrity may determine the soil's physical properties and behavior.
Resumo:
Neste texto pretendemos explorar a Realidade aumentada como meio de visualização para projectos de comunicação interactivos. Através das aplicações ARToolkit, Virtools e 3ds Max, pretendemos mostrar como criar uma plataforma interactiva portátil, que recorra ao meio ambiente e a markers para a construção do cenário de jogo. Pretendemos mostrar que o realismo da simulação, aliada à fusão dos objectos artificiais sobre o mundo real, poderá gerar empatia de interacção entre jogadores e os seus avatares.
Resumo:
In this text, we intend to explore augmented reality as a means to visualise interactive communication projects. With ARToolkit, Virtools and 3ds Max applications, we aim to show how to create a portable interactive platform that resorts to the environment and markers for constructing the game’s scenario. We plan to show that the realism of simulation, together with the merger of artificial objects with the real world, can generate interactive empathy between players and their avatars.
Resumo:
The ability to foresee how behaviour of a system arises from the interaction of its components over time - i.e. its dynamic complexity – is seen an important ability to take effective decisions in our turbulent world. Dynamic complexity emerges frequently from interrelated simple structures, such as stocks and flows, feedbacks and delays (Forrester, 1961). Common sense assumes an intuitive understanding of their dynamic behaviour. However, recent researches have pointed to a persistent and systematic error in people understanding of those building blocks of complex systems. This paper describes an empirical study concerning the native ability to understand systems thinking concepts. Two different groups - one, academic, the other, professional – submitted to four tasks, proposed by Sweeney and Sterman (2000) and Sterman (2002). The results confirm a poor intuitive understanding of the basic systems concepts, even when subjects have background in mathematics and sciences.
Resumo:
The ability to foresee how behaviour of a system arises from the interaction of its components over time - i.e. its dynamic complexity – is seen an important ability to take effective decisions in our turbulent world. Dynamic complexity emerges frequently from interrelated simple structures, such as stocks and flows, feedbacks and delays (Forrester, 1961). Common sense assumes an intuitive understanding of their dynamic behaviour. However, recent researches have pointed to a persistent and systematic error in people understanding of those building blocks of complex systems. This paper describes an empirical study concerning the native ability to understand systems thinking concepts. Two different groups - one, academic, the other, professional – submitted to four tasks, proposed by Sweeney and Sterman (2000) and Sterman (2002). The results confirm a poor intuitive understanding of the basic systems concepts, even when subjects have background in mathematics and sciences.
Resumo:
Abstract - Recently, long noncoding RNAs have emerged as pivotal molecules for the regulation of coding genes' expression. These molecules might result from antisense transcription of functional genes originating natural antisense transcripts (NATs) or from transcriptional active pseudogenes. TBCA interacts with β-tubulin and is involved in the folding and dimerization of new tubulin heterodimers, the building blocks of microtubules. Methodology/Principal findings: We found that the mouse genome contains two structurally distinct Tbca genes located in chromosomes 13 (Tbca13) and 16 (Tbca16). Interestingly, the two Tbca genes albeit ubiquitously expressed, present differential expression during mouse testis maturation. In fact, as testis maturation progresses Tbca13 mRNA levels increase progressively, while Tbca16 mRNA levels decrease. This suggests a regulatory mechanism between the two genes and prompted us to investigate the presence of the two proteins. However, using tandem mass spectrometry we were unable to identify the TBCA16 protein in testis extracts even in those corresponding to the maturation step with the highest levels of Tbca16 transcripts. These puzzling results led us to re-analyze the expression of Tbca16. We then detected that Tbca16 transcription produces sense and natural antisense transcripts. Strikingly, the specific depletion by RNAi of these transcripts leads to an increase of Tbca13 transcript levels in a mouse spermatocyte cell line. Conclusions/Significance: Our results demonstrate that Tbca13 mRNA levels are post-transcriptionally regulated by the sense and natural antisense Tbca16 mRNA levels. We propose that this regulatory mechanism operates during spermatogenesis, a process that involves microtubule rearrangements, the assembly of specific microtubule structures and requires critical TBCA levels.
Resumo:
Combined tunable WDM converters based on SiC multilayer photonic active filters are analyzed. The operation combines the properties of active long-pass and short-pass wavelength filter sections into a capacitive active band-pass filter. The sensor element is a multilayered heterostructure produced by PE-CVD. The configuration includes two stacked SiC p-i-n structures sandwiched between two transparent contacts. Transfer function characteristics are studied both theoretically and experimentally. Results show that optical bias activated photonic device combines the demultiplexing operation with the simultaneous photodetection and self amplification of an optical signal acting the device as an integrated photonic filter in the visible range. Depending on the wavelength of the external background and irradiation side, the device acts either as a short- or a long-pass band filter or as a band-stop filter. The output waveform presents a nonlinear amplitude-dependent response to the wavelengths of the input channels. A numerical simulation and two building-blocks active circuit is presented and gives insight into the physics of the device.
Resumo:
Combined tunable WDM converters based on SiC multilayer photonic active filters are analyzed. The operation combines the properties of active long-pass and short-pass wavelength filter sections into a capacitive active band-pass filter. The sensor element is a multilayered heterostructure produced by PE-CVD. The configuration includes two stacked SiC p-i-n structures sandwiched between two transparent contacts. Transfer function characteristics are studied both theoretically and experimentally. Results show that optical bias activated photonic device combines the demultiplexing operation with the simultaneous photodetection and self amplification of an optical signal acting the device as an integrated photonic filter in the visible range. Depending on the wavelength of the external background and irradiation side, the device acts either as a short- or a long-pass band filter or as a band-stop filter. The output waveform presents a nonlinear amplitude-dependent response to the wavelengths of the input channels. A numerical simulation and a two building-blocks active circuit are presented and give insight into the physics of the device. (c) 2013 Elsevier B.V. All rights reserved.
Resumo:
Mestrado em Engenharia Informática
Resumo:
A navegação e a interpretação do meio envolvente por veículos autónomos em ambientes não estruturados continua a ser um grande desafio na actualidade. Sebastian Thrun, descreve em [Thr02], que o problema do mapeamento em sistemas robóticos é o da aquisição de um modelo espacial do meio envolvente do robô. Neste contexto, a integração de sistemas sensoriais em plataformas robóticas, que permitam a construção de mapas do mundo que as rodeia é de extrema importância. A informação recolhida desses dados pode ser interpretada, tendo aplicabilidade em tarefas de localização, navegação e manipulação de objectos. Até à bem pouco tempo, a generalidade dos sistemas robóticos que realizavam tarefas de mapeamento ou Simultaneous Localization And Mapping (SLAM), utilizavam dispositivos do tipo laser rangefinders e câmaras stereo. Estes equipamentos, para além de serem dispendiosos, fornecem apenas informação bidimensional, recolhidas através de cortes transversais 2D, no caso dos rangefinders. O paradigma deste tipo de tecnologia mudou consideravelmente, com o lançamento no mercado de câmaras RGB-D, como a desenvolvida pela PrimeSense TM e o subsequente lançamento da Kinect, pela Microsoft R para a Xbox 360 no final de 2010. A qualidade do sensor de profundidade, dada a natureza de baixo custo e a sua capacidade de aquisição de dados em tempo real, é incontornável, fazendo com que o sensor se tornasse instantaneamente popular entre pesquisadores e entusiastas. Este avanço tecnológico deu origem a várias ferramentas de desenvolvimento e interacção humana com este tipo de sensor, como por exemplo a Point Cloud Library [RC11] (PCL). Esta ferramenta tem como objectivo fornecer suporte para todos os blocos de construção comuns que uma aplicação 3D necessita, dando especial ênfase ao processamento de nuvens de pontos de n dimensões adquiridas a partir de câmaras RGB-D, bem como scanners laser, câmaras Time-of-Flight ou câmaras stereo. Neste contexto, é realizada nesta dissertação, a avaliação e comparação de alguns dos módulos e métodos constituintes da biblioteca PCL, para a resolução de problemas inerentes à construção e interpretação de mapas, em ambientes indoor não estruturados, utilizando os dados provenientes da Kinect. A partir desta avaliação, é proposta uma arquitectura de sistema que sistematiza o registo de nuvens de pontos, correspondentes a vistas parciais do mundo, num modelo global consistente. Os resultados da avaliação realizada à biblioteca PCL atestam a sua viabilidade, para a resolução dos problemas propostos. Prova da sua viabilidade, são os resultados práticos obtidos, da implementação da arquitectura de sistema proposta, que apresenta resultados de desempenho interessantes, como também boas perspectivas de integração deste tipo de conceitos e tecnologia em plataformas robóticas desenvolvidas no âmbito de projectos do Laboratório de Sistemas Autónomos (LSA).
Resumo:
Multiprocessors, particularly in the form of multicores, are becoming standard building blocks for executing reliable software. But their use for applications with hard real-time requirements is non-trivial. Well-known realtime scheduling algorithms in the uniprocessor context (Rate-Monotonic [1] or Earliest-Deadline-First [1]) do not perform well on multiprocessors. For this reason the scientific community in the area of real-time systems has produced new algorithms specifically for multiprocessors. In the meanwhile, a proposal [2] exists for extending the Ada language with new basic constructs which can be used for implementing new algorithms for real-time scheduling; the family of task splitting algorithms is one of them which was emphasized in the proposal [2]. Consequently, assessing whether existing task splitting multiprocessor scheduling algorithms can be implemented with these constructs is paramount. In this paper we present a list of state-of-art task-splitting multiprocessor scheduling algorithms and, for each of them, we present detailed Ada code that uses the new constructs.
Resumo:
The purpose of this paper is the design of an optoelectronic circuit based on a-SiC technology, able to act simultaneously as a 4-bit binary encoder or a binary decoder in a 4-to-16 line configurations and show multiplexer-based logical functions. The device consists of a p-i'(a-SiC:H)-n/p-i(a-Si:H)-n multilayered structure produced by PECVD. To analyze it under information-modulated wave (color channels) and uniform irradiation (background) four monochromatic pulsed lights (input channels): red, green, blue and violet shine on the device. Steady state optical bias was superimposed separately from the front and the back sides, and the generated photocurrent was measured. Results show that the devices, under appropriate optical bias, act as reconfigurable active filters that allow optical switching and optoelectronic logic functions development providing the possibility for selective removal of useless wavelengths. The logic functions needed to construct any other complex logic functions are the NOT, and both or either an AND or an OR. Any other complex logic function that might be found can also be used as building blocks to achieve the functions needed for the retrieval of channels within the WDM communication link. (C) 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim