873 resultados para Boronic Acids


Relevância:

20.00% 20.00%

Publicador:

Resumo:

An efficient protocol is reported for the synthesis of thioesters from carboxylic acids with use of acyloxy phosphonium salts as intermediates and benzyltriethylammonium tetrathiomolybdate as the sulfur transfer reagent.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Separately, polyphenols and plant cell walls (PCW) are important contributors to the health benefits associated with fruits and vegetables. However, interactions with PCW which occur either during food preparation or mastication may affect bioaccessibility and hence bioavailability of polyphenols. Binding interactions between anthocyanins, phenolic acids (PAs) and PCW components, were evaluated using both a bacterial cellulose-pectin model system and a black carrot puree system. The majority of available polyphenols bound to PCW material with 60-70% of available anthocyanins and PAs respectively binding to black carrot puree PCW matter. Once bound, release of polyphenols using acidified methanol is low with only similar to 20% of total anthocyanins to similar to 30% of PAs being released. Less than 2% of bound polyphenol was released after in vitro gastric and small intestinal (S.I.) digestion for both the model system and the black carrot puree PCW matter. Confocal laser scanning microscopy shows localised binding of anthocyanins to PCW. Very similar patterns of binding for anthocyanins and PAs suggest that PAs form complexes with anthocyanins and polysaccharides. Time dependent changes in extractability with acidified methanol but not the total bound fraction suggests that initial nonspecific deposition on cellulose surfaces is followed by rearrangement of the bound molecules. Minimal release of anthocyanins and PAs after simulated gastric and S.I. digestion indicates that polyphenols in fruits and vegetables which bind to the PCW will be transported to the colon where they would be expected to be released by the action of cell wall degrading bacteria.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bacterial cellulose and cellulose-pectin composites were used as well-defined model plant cell wall (PCW) systems to study the interaction between phenolic acids (PA) derived from purple carrot juice concentrate (PCJC) and PCW components. Significant PA depletion from solution occurred, with pure cellulose initially (30 s-1 h) absorbing more than cellulose-pectin composites in the first hour (ca 20% cf 10-15%), but with all composites absorbing similar levels (ca 30%) after several days. Individual PAs bound to different relative extents with caffeic acid > chlorogenic acid > ferulic acid. Extrapolation of data for these model systems to carrot puree suggests that nutritionally-significant amounts of PAs could bind to cell walls, potentially restricting bioavailability in the small intestine and, as a consequence, delivering PAs to the large intestine for fermentation and metabolism by gut bacteria. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fatty acids, fibre, carotenoids and tocopherols in relation to glucose metabolism in subjects at high risk for type 2 diabetes a cross-sectional analysis Type 2 diabetes (T2D) is a heterogeneous disorder of carbohydrate, lipid and protein metabolism, resulting from genetics, environmental influences and interactions between these. The disease is characterized by insulin resistance, β-cell dysfunction, hepatic glucose overproduction and disordered fat mobilization and storage. The literature on associations between dietary factors and glucose metabolism is inconsistent. One factor behind the discrepant results may be genetic heterogeneity of study populations. Data on nutrient-gene interactions in relation to glucose metabolism are scarce. Thus, investigating high-risk populations and exploring nutrient-gene interactions are essential for improving the understanding of T2D aetiology. Ideally, this information could help to develop prevention programmes that take into account the genetic predisposition to the disease. In this study, associations between measures of glucose metabolism predicting T2D and fatty acids, antioxidative nutrients and fibre were examined in a high-risk population, i.e., in non-diabetic relatives of affected patients. Interactions between the PPARG Pro12Ala polymorphism and fatty acids on glucose metabolism were taken into consideration. This common polymorphism plays an important role in the regulation of glucose metabolism. The inverse associations observed between dietary fibre and insulin resistance are consistent with the prevailing recommendations urging increased intake of fibre to prevent T2D. Beneficial associations observed between the intake of carotenoids and glucose levels stress that a high consumption of vegetables, fruits and berries rich in carotenoids might also play a role in the prevention of T2D. Whether tocopherols have an independent association with glucose metabolism remains questionable. Observed interactions between fatty acids and glucose metabolism suggest that a high intake of palmitic acid is associated with high fasting glucose levels mainly in female Ala allele carriers. Furthermore, the PPARG Pro12Ala polymorphism may modify the metabolic response to dietary marine fat. The beneficial associations of high intake of marine n 3 fatty acids with insulin resistance and glucose levels may be restricted to carriers of the Ala allele. The findings pertain to subjects with a family history of T2D, and the cross-sectional nature of the study precludes inferences about causality. Results nevertheless show that associations of dietary factors with glucose metabolism may be modulated by the genetic makeup of an individual. Additional research is warranted to elucidate the role of probably numerous nutrient-gene interactions, some of which may be sex-specific, in the aetiology of T2D.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The hexahydrate of a 1:1 complex between L-histidyl-L-serine and glycyl-L-glutamic acid crystallizes in space group P1 with a = 4.706(1), b= 8.578(2), c= 16.521(3) ÅA; α= 85.9(1), β= 89.7(1)°, = 77.4(1). The crystal structure, solved by direct methods, has been refined to an R value of 0.046 for 2150 observed reflections. The two peptide molecules in the structure have somewhat extended conformations. The unlike molecules aggregate into separate alternating layers. Each layer is stabilized by hydrogen bonded head-to-tail sequences as well as sequences of hydrogen bonds involving peptide groups. The arrangement of molecules in each layer is similar to one of the plausible idealized arrangements of L-alanyl-L-alanine worked out from simple geometrical considerations. Adjacent layers in the structure are held together by interactions involving side chains as well as water molecules. The water structure observed in the complex provides a good model, at atomic resolution, for that in protein crystals. An interesting feature of the crystal structure is the existence of two water channels in the interfaces between adjacent peptide layers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Anti-deoxyadenylate antibodies were produced in rabbits by injecting a conjugate of deoxyadenosine 5′-phosphate with bovine serum albumin. The antisera, as analyzed by double diffusion in agar and the quantitative precipitin reaction, showed hapten-specific antibodies. The specific interaction between [3H]deoxyadenylate and antiserum was studied by a sensitive nitrocellulose membrane-binding assay. The specificity of the antibodies was analyzed by measuring the effectiveness of other nucleotides or derivatives to inhibit the hapten-antibody binding. The requirements for recognition by the antibody sites were studied by using a series of naturally occurring nucleic acid components as well as some synthetic derivatives as inhibitors. The antibodies were found to show a high degree of specificity for the whole nucleotide, the base, sugar and phosphate playing almost equally important roles. There was cross reactivity with other mononucleotides, although of a low order. The antibodies were able to react with DNA and tRNA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

L-Arginine ascorbate, C6HIsN40+.C6H706, a 1"1 crystalline complex between the amino acid arginineand the vitamin ascorbic acid, crystallizes in the monoclinic space group P21 with two formula units in a cell of dimensions a = 5.060 (8), b = 9.977 (9), c = 15.330 (13) A, fl = 97.5 (2) °. The structure was solved by the symbolic addition procedure and refined to an R of 0.067 for 1501 photographically observed reflec- tions. The conformation of the arginine molecule in the structure is different from any observed so far. The present structure provides the first description of the ascorbate anion unaffected by the geometrical constraints and disturbances imposed by the requirements of metal coordination. The lactone group and the deprotonated enediol group in the anion are planar and the side chain assumes a conformation which appears to be sterically the most favourable. In the crystals, the arginine molecules and the ascorbate anions aggregate separately into alternating layers. The molecules in the arginine layer are held together by interactions involving a-amino and ~t-carboxylate groups, a situation analogous to that found in proteins. The two layers of unlike molecules are interconnected primarily through the interactions of the side-chain guanidyl group of arginine with the ascorbate ion. These involve a specific ion-pair interaction accompanied by two convergent hydrogen bonds and another pair of nearly parallel hydrogen bonds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

L-Serine-L-ascorbic acid, C3HTNOa. C6HsO6, a 1:1 complex between the amino acid serine and the vitamin ascorbic acid, crystallizes in the orthorhombic space group P2~2~2~ with four formula units in a cell of dimensions a = 5.335(3), b = 8.769(2), c = 25.782 (5) A. The structure was solved by direct methods and refined by full-matrix least squares to an R of 0.036 for 951 observed reflections. Both molecules are neutral in the structure. The conformation of the serine molecule is different from that observed in the crystal structures of L-serine, DL-serine and L-serine monohydrate. The enediol group in the ascorbic acid molecule is planar, whereas significant departures from planarity are observed in the lactone group. The conformation of this molecule is similar to that observed in arginine ascorbate. The unlike molecules aggregate into separate columns in the crystal structure. The columns are held together by hydrogen bonds. Among these, a pair of hydrogen bonds between the enediol group of ascorbic acid and the carboxylate group of serine provides a possible model for a specific interaction between ascorbic acid and a carboxylate ion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Perfluorinated alkyl acids (PFAAs) have been detected in serum at low concentrations in background populations. Higher concentrations haven been observed in adult males compared to females, with a possible explanation that menstruation offers females an additional elimination route. In this study, we examined the significance of blood loss as an elimination route of PFAAs. Pooled serum samples were collected from individuals undergoing a medical procedure involving ongoing blood withdrawal called venesection. Concentrations from male venesection patients were approximately 40% lower than males in the general population for perfluorohexane sulfonate (PFHxS), perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA). A simple pharmacokinetic model was used to test the hypothesis that blood loss could explain why adult males have higher concentrations of PFAAs than females, and why males undergoing venesections had lower concentrations compared to males in the general population. The model application generally supported these hypotheses showing that venesection might reduce blood serum concentrations by 37% (PFOA) and 53% (PFOS) compared to the observed difference of 44% and 37%. Menstruation was modeled to show a 22% reduction in PFOA serum concentrations compared to a 24% difference in concentrations between males and females in the background population. Uncertainties in the modeling and the data are identified and discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Environmentally benign and economical methods for the preparation of industrially important hydroxy acids and diacids were developed. The carboxylic acids, used in polyesters, alkyd resins, and polyamides, were obtained by the oxidation of the corresponding alcohols with hydrogen peroxide or air catalyzed by sodium tungstate or supported noble metals. These oxidations were carried out using water as a solvent. The alcohols are also a useful alternative to the conventional reactants, hydroxyaldehydes and cycloalkanes. The oxidation of 2,2-disubstituted propane-1,3-diols with hydrogen peroxide catalyzed by sodium tungstate afforded 2,2-disubstituted 3-hydroxypropanoic acids and 1,1-disubstituted ethane-1,2-diols as products. A computational study of the Baeyer-Villiger rearrangement of the intermediate 2,2-disubstituted 3-hydroxypropanals gave in-depth data of the mechanism of the reaction. Linear primary diols having chain length of at least six carbons were easily oxidized with hydrogen peroxide to linear dicarboxylic acids catalyzed by sodium tungstate. The Pt/C catalyzed air oxidation of 2,2-disubstituted propane-1,3-diols and linear primary diols afforded the highest yield of the corresponding hydroxy acids, while the Pt, Bi/C catalyzed oxidation of the diols afforded the highest yield of the corresponding diacids. The mechanism of the promoted oxidation was best described by the ensemble effect, and by the formation of a complex of the hydroxy and the carboxy groups of the hydroxy acids with bismuth atoms. The Pt, Bi/C catalyzed air oxidation of 2-substituted 2-hydroxymethylpropane-1,3-diols gave 2-substituted malonic acids by the decarboxylation of the corresponding triacids. Activated carbon was the best support and bismuth the most efficient promoter in the air oxidation of 2,2-dialkylpropane-1,3-diols to diacids. In oxidations carried out in organic solvents barium sulfate could be a valuable alternative to activated carbon as a non-flammable support. In the Pt/C catalyzed air oxidation of 2,2-disubstituted propane-1,3-diols to 2,2-disubstituted 3-hydroxypropanoic acids the small size of the 2-substituents enhanced the rate of the oxidation. When the potential of platinum of the catalyst was not controlled, the highest yield of the diacids in the Pt, Bi/C catalyzed air oxidation of 2,2-dialkylpropane-1,3-diols was obtained in the regime of mass transfer. The most favorable pH of the reaction mixture of the promoted oxidation was 10. The reaction temperature of 40°C prevented the decarboxylation of the diacids.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of aqueous pyridine on a hapten—antihapten system was investigated by the quantitative precipitin reaction and by the membrane filtration method. It was found that dilute solutions of pyridine inhibited the reaction between isopentenyladenosine and its antiserum. Other solvents examined were less effective. The effect of pyridine was reversible at concentrations where complete inhibition occurred, thus indicating its use for the dissociation of antigen—antibody complexes. The inhibitory effect of pyridine was exploited in a single-step purification method for anti—isopentenyladenosine and antideoxy-adenylate antibodies. In addition, generally applicable methods for linking nucleosides and nucleotides to aminoethyl-Sepharose are described.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this study is to describe the development of application of mass spectrometry for the structural analyses of non-coding ribonucleic acids during past decade. Mass spectrometric methods are compared of traditional gel electrophoretic methods, the characteristics of performance of mass spectrometric, analyses are studied and the future trends of mass spectrometry of ribonucleic acids are discussed. Non-coding ribonucleic acids are short polymeric biomolecules which are not translated to proteins, but which may affect the gene expression in all organisms. Regulatory ribonucleic acids act through transient interactions with key molecules in signal transduction pathways. Interactions are mediated through specific secondary and tertiary structures. Posttranscriptional modifications in the structures of molecules may introduce new properties to the organism, such as adaptation to environmental changes or development of resistance to antibiotics. In the scope of this study, the structural studies include i) determination of the sequence of nucleobases in the polymer chain, ii) characterisation and localisation of posttranscriptional modifications in nucleobases and in the backbone structure, iii) identification of ribonucleic acid-binding molecules and iv) probing of higher order structures in the ribonucleic acid molecule. Bacteria, archaea, viruses and HeLa cancer cells have been used as target organisms. Synthesised ribonucleic acids consisting of structural regions of interest have been frequently used. Electrospray ionisation (ESI) and matrix-assisted laser desorption ionisation (MALDI) have been used for ionisation of ribonucleic analytes. Ammonium acetate and 2-propanol are common solvents for ESI. Trihydroxyacetophenone is the optimal MALDI matrix for ionisation of ribonucleic acids and peptides. Ammonium salts are used in ESI buffers and MALDI matrices as additives to remove cation adducts. Reverse phase high performance liquid chromatography has been used for desalting and fractionation of analytes either off-line of on-line, coupled with ESI source. Triethylamine and triethylammonium bicarbonate are used as ion pair reagents almost exclusively. Fourier transform ion cyclotron resonance analyser using ESI coupled with liquid chromatography is the platform of choice for all forms of structural analyses. Time-of-flight (TOF) analyser using MALDI may offer sensitive, easy-to-use and economical solution for simple sequencing of longer oligonucleotides and analyses of analyte mixtures without prior fractionation. Special analysis software is used for computer-aided interpretation of mass spectra. With mass spectrometry, sequences of 20-30 nucleotides of length may be determined unambiguously. Sequencing may be applied to quality control of short synthetic oligomers for analytical purposes. Sequencing in conjunction with other structural studies enables accurate localisation and characterisation of posttranscriptional modifications and identification of nucleobases and amino acids at the sites of interaction. High throughput screening methods for RNA-binding ligands have been developed. Probing of the higher order structures has provided supportive data for computer-generated three dimensional models of viral pseudoknots. In conclusion. mass spectrometric methods are well suited for structural analyses of small species of ribonucleic acids, such as short non-coding ribonucleic acids in the molecular size region of 20-30 nucleotides. Structural information not attainable with other methods of analyses, such as nuclear magnetic resonance and X-ray crystallography, may be obtained with the use of mass spectrometry. Sequencing may be applied to quality control of short synthetic oligomers for analytical purposes. Ligand screening may be used in the search of possible new therapeutic agents. Demanding assay design and challenging interpretation of data requires multidisclipinary knowledge. The implement of mass spectrometry to structural studies of ribonucleic acids is probably most efficiently conducted in specialist groups consisting of researchers from various fields of science.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Enzymes belonging to the M1 family play important cellular roles and the key amino acids (aa) in the catalytic domain are conserved. However, C-terminal domain aa are highly variable and demonstrate distinct differences in organization. To address a functional role for the C-terminal domain, progressive deletions were generated in Tricorn interacting factor F2 from Thermoplasma acidophilum (F2) and Peptidase N from Escherichia coli (PepN). Catalytic activity was partially reduced in PepN lacking 4 C-terminal residues (PepNΔC4) whereas it was greatly reduced in F2 lacking 10 C-terminal residues (F2ΔC10) or PepN lacking eleven C-terminal residues (PepNΔC11). Notably, expression of PepNΔC4, but not PepNΔC11, in E. coliΔpepN increased its ability to resist nutritional and high temperature stress, demonstrating physiological significance. Purified C-terminal deleted proteins demonstrated greater sensitivity to trypsin and bound stronger to 8-amino 1-napthalene sulphonic acid (ANS), revealing greater numbers of surface exposed hydrophobic aa. Also, F2 or PepN containing large aa deletions in the C-termini, but not smaller deletions, were present in high amounts in the insoluble fraction of cell extracts probably due to reduced protein solubility. Modeling studies, using the crystal structure of E. coli PepN, demonstrated increase in hydrophobic surface area and change in accessibility of several aa from buried to exposed upon deletion of C-terminal aa. Together, these studies revealed that non-conserved distal C-terminal aa repress the surface exposure of apolar aa, enhance protein solubility, and catalytic activity in two soluble and distinct members of the M1 family.